Pluripotential Monge-Ampere flows in big cohomology classes

被引:3
|
作者
Dang, Quang-Tuan [1 ,2 ]
机构
[1] Univ Paris Saclay, Lab Math Orsay, CNRS, F-91405 Orsay, France
[2] Univ Toulouse, Inst Math Toulouse, CNRS, 118 Route Narbonne, F-31400 Toulouse, France
关键词
Parabolic Monge-Ampere equation; Big cohomology class; Kahler-Ricci flow; KAHLER-EINSTEIN METRICS; DIRICHLET PROBLEM; MINIMAL MODELS; RICCI FLOW; VARIETIES; EXISTENCE;
D O I
10.1016/j.jfa.2021.109373
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study pluripotential complex Monge-Ampere flows in big cohomology classes on compact Kahler manifolds. We use the Perron method, considering pluripotential subsolutions to the Cauchy problem. We prove that, under natural assumptions on the data, the upper envelope of all subsolutions is continuous in space and semi-concave in time, and provides a unique pluripotential solution with such regularity. We apply this theory to study pluripotential Kahler-Ricci flows on compact Kahler manifolds of general type as well as on stable varieties (c) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页数:65
相关论文
共 50 条
  • [1] Monge-Ampere equations in big cohomology classes
    Boucksom, Sebastien
    Eyssidieux, Philippe
    Guedj, Vincent
    Zeriahi, Ahmed
    ACTA MATHEMATICA, 2010, 205 (02) : 199 - 262
  • [2] Pluripotential solutions versus viscosity solutions to complex Monge-Ampere flows
    Guedj, Vincent
    Lu, Chinh H.
    Zeriahi, Ahmed
    PURE AND APPLIED MATHEMATICS QUARTERLY, 2021, 17 (03) : 971 - 990
  • [3] Complex Monge-Ampere Equations
    Phong, D. H.
    Song, Jian
    Sturm, Jacob
    IN MEMORY OF C.C. HSIUNG: LECTURES GIVEN AT THE JDG SYMPOSIUM, LEHIGH UNIVERSITY, JUNE 2010, 2012, 17 : 327 - +
  • [4] The complex Monge-Ampere operator in the Cegrell classes
    Czyz, Rafal
    DISSERTATIONES MATHEMATICAE, 2009, (466) : 5 - +
  • [5] ON THE MONGE-AMPERE EQUATION
    Figalli, Alessio
    ASTERISQUE, 2019, (414) : 477 - 503
  • [6] STABILITY OF SOLUTIONS TO COMPLEX MONGE-AMPERE FLOWS
    Guedj, Vincent
    Lu, Chinh H.
    Zeriahi, Ahmed
    ANNALES DE L INSTITUT FOURIER, 2018, 68 (07) : 2819 - 2836
  • [7] Viscosity Solutions to Degenerate Complex Monge-Ampere Equations
    Eyssidieux, Philippe
    Guedj, Vincent
    Zeriahi, Ahmed
    COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2011, 64 (08) : 1059 - 1094
  • [8] The Complex Monge-Ampere Equation in the Cegrell's Classes
    Quy, Hoang Nhat
    RESULTS IN MATHEMATICS, 2025, 80 (01)
  • [9] Regularizing properties of complex Monge-Ampere flows II: Hermitian manifolds
    To, Tat Dat
    MATHEMATISCHE ANNALEN, 2018, 372 (1-2) : 699 - 741
  • [10] Weak solutions to degenerate complex Monge-Ampere flows II
    Eyssidieux, Philippe
    Guedj, Vincent
    Zeriahi, Ahmed
    ADVANCES IN MATHEMATICS, 2016, 293 : 37 - 80