A general asymptotic formula for distinct partitions

被引:0
|
作者
Brunel, Vivien [1 ]
机构
[1] Leonard de Vinci Pole Univ, Finance Lab, Courbevoie, France
关键词
Integer partitions; Analytic combinatorics; Distinct partitions; Asymptotics; Saddle-point; INTEGER-PARTITIONS; NUMBER;
D O I
10.1016/j.aop.2018.03.023
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Many asymptotic formulas exist for unrestricted integer partitions as well as for equal partitions of integers into a finite number of parts. We use an analogy with fermion gases and the tools of statistical physics to derive asymptotic formulas for distinct partitions with a large but finite number of parts. These results are supported by the fact that we recover some other existing asymptotic results and by numerical comparisons with exact results. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:73 / 83
页数:11
相关论文
共 50 条
  • [1] Distinct r-tuples in integer partitions
    Archibald, Margaret
    Blecher, Aubrey
    Knopfmacher, Arnold
    RAMANUJAN JOURNAL, 2019, 50 (02) : 237 - 252
  • [2] Asymptotic formulas for integer partitions within the approach of microcanonical ensemble
    Prokhorov, D.
    Rovenchak, A.
    CONDENSED MATTER PHYSICS, 2012, 15 (03)
  • [3] On a general class of non-squashing partitions
    Folsom, Amanda
    Homma, Youkow
    Ryu, Jun Hwan
    Tong, Benjamin
    DISCRETE MATHEMATICS, 2016, 339 (05) : 1482 - 1506
  • [4] Cubic partitions in terms of distinct partitions
    Merca, Mircea
    RAMANUJAN JOURNAL, 2025, 67 (02)
  • [5] Residue class biases in unrestricted partitions, partitions into distinct parts, and overpartitions
    Schlosser, Michael J.
    Zhou, Nian Hong
    RESEARCH IN THE MATHEMATICAL SCIENCES, 2025, 12 (01)
  • [6] Distinct parts partitions without sequences
    Bringmann, Kathrin
    Mahlburg, Karl
    Nataraj, Karthik
    ELECTRONIC JOURNAL OF COMBINATORICS, 2015, 22 (03)
  • [7] On the number of partitions with distinct even parts
    Chen, Shi-Chao
    DISCRETE MATHEMATICS, 2011, 311 (12) : 940 - 943
  • [8] Identities involving partitions with distinct even parts and 4-regular partitions
    Andrews, George E.
    El Bachraoui, Mohamed
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2025, 119 (01)
  • [9] Distinct partitions and overpartitions
    Merca, Mircea
    CARPATHIAN JOURNAL OF MATHEMATICS, 2022, 38 (01) : 149 - 158
  • [10] Distinct r-tuples in integer partitions
    Margaret Archibald
    Aubrey Blecher
    Arnold Knopfmacher
    The Ramanujan Journal, 2019, 50 : 237 - 252