Alliance with EPR Effect: Combined Strategies to Improve the EPR Effect in the Tumor Microenvironment

被引:302
作者
Park, Jooho [1 ]
Choi, Yongwhan [1 ,2 ]
Chang, Hyeyoun [1 ,3 ]
Um, Wooram [1 ]
Ryu, Ju Hee [1 ]
Kwon, Ick Chan [1 ,2 ,3 ]
机构
[1] Korea Inst Sci & Technol, Biomed Res Inst, Ctr Theragnosis, Hwarang Ro 14 Gil 5, Seoul 02792, South Korea
[2] Korea Univ, KU KIST Grad Sch Converging Sci & Technol, 145 Anam Ro, Seoul 02841, South Korea
[3] Dana Farber Canc Inst, Dept Canc Biol, 450 Brookline Ave, Boston, MA 02215 USA
基金
新加坡国家研究基金会;
关键词
EPR effect; targeted therapy; nanoparticle; cancer treatment; drug delivery; TARGETED PHOTODYNAMIC THERAPY; IN-VIVO; MACROMOLECULAR THERAPEUTICS; MAGNETIC NANOPARTICLES; CANCER NANOMEDICINE; DELIVERY; ANGIOGENESIS; CHEMOTHERAPY; GROWTH; MECHANISMS;
D O I
10.7150/thno.37198
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
The use of nanomedicine for cancer treatment takes advantage of its preferential accumulation in tumors owing to the enhanced permeability and retention (EPR) effect. The development of cancer nanomedicine has promised highly effective treatment options unprecedented by standard therapeutics. However, the therapeutic efficacy of passively targeted nanomedicine is not always satisfactory because it is largely influenced by the heterogeneity of the intensity of the EPR effect exhibited within a tumor, at different stages of a tumor, and among individual tumors. In addition, limited data on EPR effectiveness in human hinders further clinical translation of nanomedicine. This unsatisfactory therapeutic outcome in mice and humans necessitates novel approaches to improve the EPR effect. This review focuses on current attempts at overcoming the limitations of traditional EPR-dependent nanomedicine by incorporating supplementary strategies, such as additional molecular targeting, physical alteration, or physiological remodeling of the tumor microenvironment. This review will provide valuable insight to researchers who seek to overcome the limitations of relying on the EPR effect alone in cancer nanomedicine and go "beyond the EPR effect".
引用
收藏
页码:8073 / 8090
页数:18
相关论文
共 147 条
[1]   Current Challenges of Cancer Anti-angiogenic Therapy and the Promise of Nanotherapeutics [J].
Abdalla, Ahmed M. E. ;
Xiao, Lin ;
Ullah, Muhammad Wajid ;
Yu, Miao ;
Ouyang, Chenxi ;
Yang, Guang .
THERANOSTICS, 2018, 8 (02) :533-+
[2]   Sodium bicarbonate nanoparticles modulate the tumor pH and enhance the cellular uptake of doxorubicin [J].
Abumanhal-Masarweh, Hanan ;
Koren, Lilach ;
Zinger, Assaf ;
Yaari, Zvi ;
Krinsky, Nitzan ;
Kaneti, Galoz ;
Dahan, Nitsan ;
Lupu-Haber, Yael ;
Suss-Toby, Edith ;
Weiss-Messer, Esther ;
Schlesinger-Laufer, Michal ;
Shainsky-Roitman, Janna ;
Schroeder, Avi .
JOURNAL OF CONTROLLED RELEASE, 2019, 296 :1-13
[3]   Nanoparticles for Targeting Intratumoral Hypoxia: Exploiting a Potential Weakness of Glioblastoma [J].
Aldea, Mihaela ;
Florian, Ioan Alexandru ;
Kacso, Gabriel ;
Craciun, Lucian ;
Boca, Sanda ;
Soritau, Olga ;
Florian, Ioan Stefan .
PHARMACEUTICAL RESEARCH, 2016, 33 (09) :2059-2077
[4]   Toward understanding and exploiting tumor heterogeneity [J].
Alizadeh, Ash A. ;
Aranda, Victoria ;
Bardelli, Alberto ;
Blanpain, Cedric ;
Bock, Christoph ;
Borowski, Christine ;
Caldas, Carlos ;
Califano, Andrea ;
Doherty, Michael ;
Elsner, Markus ;
Esteller, Manel ;
Fitzgerald, Rebecca ;
Korbel, Jan O. ;
Lichter, Peter ;
Mason, Christopher E. ;
Navin, Nicholas ;
Pe'er, Dana ;
Polyak, Kornelia ;
Roberts, Charles W. M. ;
Siu, Lillian ;
Snyder, Alexandra ;
Stower, Hannah ;
Swanton, Charles ;
Verhaak, Roel G. W. ;
Zenklusen, Jean C. ;
Zuber, Johannes ;
Zucman-Rossi, Jessica .
NATURE MEDICINE, 2015, 21 (08) :846-853
[5]   The inflammatory micro-environment in tumor progression: The role of tumor-associated macrophages [J].
Allavena, Paola ;
Sica, Antonio ;
Solinas, Graziella ;
Porta, Chiara ;
Mantovani, Alberto .
CRITICAL REVIEWS IN ONCOLOGY HEMATOLOGY, 2008, 66 (01) :1-9
[6]   Mechanisms and Barriers in Cancer Nanomedicine: Adressing Challenges, Looking for Solutions [J].
Anchordoquy, Thomas J. ;
Barenholz, Yechezkel ;
Boraschi, Diana ;
Chorny, Michael ;
Decuzzi, Paolo ;
Dobrovolskaia, Marina A. ;
Farhangrazi, Z. Shadi ;
Farrell, Dorothy ;
Gabizon, Alberto ;
Ghandehari, Hamidreza ;
Godin, Biana ;
La-Beck, Ninh M. ;
Ljubimova, Julia ;
Moghimi, S. Moein ;
Pagliaro, Len ;
Park, Ji-Ho ;
Peer, Dan ;
Ruoslahti, Erkki ;
Serkova, Natalie J. ;
Simberg, Dmitri .
ACS NANO, 2017, 11 (01) :12-18
[7]   Dual-Energy CT Imaging of Tumor Liposome Delivery After Gold Nanoparticle-Augmented Radiation Therapy [J].
Ashton, Jeffrey R. ;
Castle, Katherine D. ;
Qi, Yi ;
Kirsch, David G. ;
West, Jennifer L. ;
Badea, Cristian T. .
THERANOSTICS, 2018, 8 (07) :1782-1797
[8]   The tumour microenvironment after radiotherapy: mechanisms of resistance and recurrence [J].
Barker, Holly E. ;
Paget, James T. E. ;
Khan, Aadil A. ;
Harrington, Kevin J. .
NATURE REVIEWS CANCER, 2015, 15 (07) :409-425
[9]   Towards clinical translation of ligand-functionalized liposomes in targeted cancer therapy: Challenges and opportunities [J].
Belfiore, Lisa ;
Saunders, Darren N. ;
Ranson, Marie ;
Thurecht, Kristofer J. ;
Storm, Gert ;
Vine, Kara L. .
JOURNAL OF CONTROLLED RELEASE, 2018, 277 :1-13
[10]   Intestinal lymphatic vasculature: structure, mechanisms and functions [J].
Bernier-Latmani, Jeremiah ;
Petrova, Tatiana V. .
NATURE REVIEWS GASTROENTEROLOGY & HEPATOLOGY, 2017, 14 (09) :510-526