Singular perturbed problems in the zero mass case: asymptotic behavior of spikes

被引:12
作者
Dancer, E. N. [1 ]
Santra, Sanjiban [1 ]
机构
[1] Univ Sydney, Sch Math & Stat, Sydney, NSW 2006, Australia
基金
澳大利亚研究理事会;
关键词
Concentration phenomena; Peak solutions; Morse index; Finite dimensional reduction; NONLINEAR SCHRODINGER-EQUATIONS; SEMILINEAR NEUMANN PROBLEM; LEAST-ENERGY SOLUTIONS; BOUND-STATES; ELLIPTIC-EQUATIONS; EXISTENCE; LOCATION; SHAPE;
D O I
10.1007/s10231-009-0105-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We discuss the asymptotic behavior of the least energy solution of a Dirichlet problem in the zero mass case. If Q is a uniformly positive potential having k isolated local minima, then we prove the existence of a positive multi-spike solutions having k peaks concentrating at each local minima of the potential.
引用
收藏
页码:185 / 225
页数:41
相关论文
共 19 条
[1]   Pure and mixed phase Bi2O3 thin films obtained by metal organic chemical vapor deposition [J].
Bandoli, G ;
Barreca, D ;
Brescacin, E ;
Rizzi, GA ;
Tondello, E .
CHEMICAL VAPOR DEPOSITION, 1996, 2 (06) :238-&
[2]  
BERESTYCKI H, 1983, ARCH RATION MECH AN, V82, P313
[3]  
Dancer E. N., 1995, TOPOL METHOD NONL AN, V5, P141
[4]   SOME NOTES ON THE METHOD OF MOVING PLANES [J].
DANCER, EN .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1992, 46 (03) :425-434
[5]   Multi-peak bound states for nonlinear Schrodinger equations [J].
Del Pino, M ;
Felmer, PL .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1998, 15 (02) :127-149
[6]   Semi-classical states for nonlinear Schrodinger equations [J].
delPino, M ;
Felmer, PL .
JOURNAL OF FUNCTIONAL ANALYSIS, 1997, 149 (01) :245-265
[7]   Local mountain passes for semilinear elliptic problems in unbounded domains [J].
delPino, M ;
Felmer, PL .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 1996, 4 (02) :121-137
[8]   NONSPREADING WAVE-PACKETS FOR THE CUBIC SCHRODINGER-EQUATION WITH A BOUNDED POTENTIAL [J].
FLOER, A ;
WEINSTEIN, A .
JOURNAL OF FUNCTIONAL ANALYSIS, 1986, 69 (03) :397-408
[9]   Asymptotic shape and location of small cores in elliptic free-boundary problems [J].
Flucher, M ;
Wei, J .
MATHEMATISCHE ZEITSCHRIFT, 1998, 228 (04) :683-703
[10]  
Gidas B., 1981, Commun. Partial Differ. Equ., V6, P883, DOI 10.1080/03605308108820196