AN ADAPTIVE FUZZY RULE-BASED COLOR IMAGE SEGMENTATION ALGORITHM

被引:0
作者
Wu, Songye [1 ]
Wu, Yundong [1 ]
Chen, Shuili [1 ]
Huang, Zhenkun [1 ]
机构
[1] Jimei Univ, Sch Sci, Xiamen 361021, Fujian, Peoples R China
来源
QUANTITATIVE LOGIC AND SOFT COMPUTING | 2012年 / 5卷
关键词
Fuzzy rules; Similarity percentage; Self-adaption; Color image segmentation;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we proposed an adaptive fuzzy rule-based color image segmentation algorithm. By using look-up table for designing a FIS (Fuzzy Inference System) to compute similarity percentage of the neighboring pixels and region feature histogram information, then we can use fast-merge for achieving a new color image segmentation algorithm. The experimental results show that our algorithm can produce good results compared to some existing algorithm.
引用
收藏
页码:394 / 401
页数:8
相关论文
共 8 条
  • [1] Chang Y.L., 1993, THESIS U ALBERTA
  • [2] ADAPTIVE IMAGE REGION-GROWING
    CHANG, YL
    LI, XB
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 1994, 3 (06) : 868 - 872
  • [3] FAST IMAGE REGION GROWING
    CHANG, YL
    LI, XB
    [J]. IMAGE AND VISION COMPUTING, 1995, 13 (07) : 559 - 571
  • [4] Rule-based automatic segmentation of color images
    Demirci, Recep
    [J]. AEU-INTERNATIONAL JOURNAL OF ELECTRONICS AND COMMUNICATIONS, 2006, 60 (06) : 435 - 442
  • [5] Gonzalez R. C., 2004, Digital image processing using MATLAB, VSecond
  • [6] Color image segmentation based on adaptive local thresholds
    Navon, E
    Miller, O
    Averbuch, A
    [J]. IMAGE AND VISION COMPUTING, 2005, 23 (01) : 69 - 85
  • [7] Color image segmentation using histogram thresholding - Fuzzy C-means hybrid approach
    Tan, Khang Siang
    Isa, Nor Ashidi Mat
    [J]. PATTERN RECOGNITION, 2011, 44 (01) : 1 - 15
  • [8] Wang L., 1997, COURSE FUZZY SYSTEM