Optimal covers with Hamilton cycles in random graphs

被引:3
作者
Hefetz, Dan [1 ]
Kuehn, Daniela [1 ]
Lapinskas, John [2 ]
Osthus, Deryk [1 ]
机构
[1] Univ Birmingham, Sch Math, Birmingham B15 2TT, W Midlands, England
[2] Univ Oxford, Dept Comp Sci, Oxford OX1 3QD, England
基金
欧洲研究理事会;
关键词
REGULAR EXPANDERS; DECOMPOSITIONS; PACKING;
D O I
10.1007/s00493-014-2956-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A packing of a graph G with Hamilton cycles is a set of edge-disjoint Hamilton cycles in G. Such packings have been studied intensively and recent results imply that a largest packing of Hamilton cycles in G (n,p) a.a.s. has size aOES delta(G (n,p) )/2aOE <. Glebov, Krivelevich and Szab recently initiated research on the 'dual' problem, where one asks for a set of Hamilton cycles covering all edges of G. Our main result states that for , a.a.s. the edges of G (n,p) can be covered by aOEI" (G (n,p) )/2aOE parts per thousand Hamilton cycles. This is clearly optimal and improves an approximate result of Glebov, Krivelevich and Szab, which holds for p a parts per thousand yen n (-1+E >). Our proof is based on a result of Knox, Kuhn and Osthus on packing Hamilton cycles in pseudorandom graphs.
引用
收藏
页码:573 / 596
页数:24
相关论文
共 19 条
  • [1] Ajtai M., 1985, ANN DISCRETE MATH, V27, P173
  • [2] [Anonymous], 1998, Random graphs
  • [3] ON THE RESILIENCE OF HAMILTONICITY AND OPTIMAL PACKING OF HAMILTON CYCLES IN RANDOM GRAPHS
    Ben-Shimon, Sonny
    Krivelevich, Michael
    Sudakov, Benny
    [J]. SIAM JOURNAL ON DISCRETE MATHEMATICS, 2011, 25 (03) : 1176 - 1193
  • [4] Bollobas B., 1985, N HOLLAND MATH STUD, V118, P23
  • [5] Bollobas B., 1984, GRAPH THEORY COMBINA, P35
  • [6] On packing Hamilton cycles in ε-regular graphs
    Frieze, A
    Krivelevich, M
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 2005, 94 (01) : 159 - 172
  • [7] On two Hamilton cycle problems in random graphs
    Frieze, Alan
    Krivelevich, Michael
    [J]. ISRAEL JOURNAL OF MATHEMATICS, 2008, 166 (01) : 221 - 234
  • [8] On Covering Expander Graphs by Hamilton Cycles
    Glebov, Roman
    Krivelevich, Michael
    Szabo, Tibor
    [J]. RANDOM STRUCTURES & ALGORITHMS, 2014, 44 (02) : 183 - 200
  • [9] HAMILTON CYCLES IN HIGHLY CONNECTED AND EXPANDING GRAPHS
    Hefetz, Dan
    Krivelevich, Michael
    Szabo, Tibor
    [J]. COMBINATORICA, 2009, 29 (05) : 547 - 568
  • [10] JANSON S, 2000, WIL INT S D, pR5, DOI 10.1002/9781118032718