COVID-19 Classification Based on Deep Convolution Neural Network Over a Wireless Network

被引:2
|
作者
Shalaby, Wafaa A. [1 ]
Saad, Waleed [1 ,2 ]
Shokair, Mona [1 ]
Abd El-Samie, Fathi E. [1 ,3 ]
Dessouky, Moawad I. [1 ]
机构
[1] Menoufia Univ, Dept Elect & Elect Commun, Fac Elect Engn, Menoufia 32952, Egypt
[2] Shaqra Univ, Dept Elect Engn, Coll Engn, Dawadmi, Ar Riyadh, Saudi Arabia
[3] Princess Nourah BintAbdulrahman Univ, Dept Informat Technol, Coll Comp & Informat Sci, Riyadh 21974, Saudi Arabia
关键词
COVID-19; Convolution neural network; Feature extraction; Wireless communications;
D O I
10.1007/s11277-021-08523-y
中图分类号
TN [电子技术、通信技术];
学科分类号
0809 ;
摘要
Corona Virus Disease 19 (COVID-19) firstly spread in China since December 2019. Then, it spread at a high rate around the world. Therefore, rapid diagnosis of COVID-19 has become a very hot research topic. One of the possible diagnostic tools is to use a deep convolution neural network (DCNN) to classify patient images. Chest X-ray is one of the most widely-used imaging techniques for classifying COVID-19 cases. This paper presents a proposed wireless communication and classification system for X-ray images to detect COVID-19 cases. Different modulation techniques are compared to select the most reliable one with less required bandwidth. The proposed DCNN architecture consists of deep feature extraction and classification layers. Firstly, the proposed DCNN hyper-parameters are adjusted in the training phase. Then, the tuned hyper-parameters are utilized in the testing phase. These hyper-parameters are the optimization algorithm, the learning rate, the mini-batch size and the number of epochs. From simulation results, the proposed scheme outperforms other related pre-trained networks. The performance metrics are accuracy, loss, confusion matrix, sensitivity, precision, F-1 score, specificity, Receiver Operating Characteristic (ROC) curve, and Area Under the Curve (AUC). The proposed scheme achieves a high accuracy of 97.8 %, a specificity of 98.5 %, and an AUC of 98.9 %.
引用
收藏
页码:1543 / 1563
页数:21
相关论文
共 50 条
  • [41] Rock images classification by using deep convolution neural network
    Cheng, Guojian
    Guo, Wenhui
    2ND ANNUAL INTERNATIONAL CONFERENCE ON INFORMATION SYSTEM AND ARTIFICIAL INTELLIGENCE (ISAI2017), 2017, 887
  • [43] Adult Content Classification Through Deep Convolution Neural Network
    Nurhadiyatna, Adi
    Cahyadi, Septian
    Damatraseta, Febri
    Rianto, Yan
    2017 INTERNATIONAL CONFERENCE ON COMPUTER, CONTROL, INFORMATICS AND ITS APPLICATIONS (IC3INA), 2017, : 106 - 110
  • [44] Infrared Handprint Classification Using Deep Convolution Neural Network
    Zijie Zhou
    Baofeng Zhang
    Xiao Yu
    Neural Processing Letters, 2021, 53 : 1065 - 1079
  • [45] Infrared Handprint Classification Using Deep Convolution Neural Network
    Zhou, Zijie
    Zhang, Baofeng
    Yu, Xiao
    NEURAL PROCESSING LETTERS, 2021, 53 (02) : 1065 - 1079
  • [46] Fuzzy enhancement and deep hash layer based neural network to detect Covid-19
    Nandal, Amita
    Blagojevic, Marija
    Milosevic, Danijela
    Dhaka, Arvind
    Mishra, Lakshmi Narayan
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2021, 41 (01) : 1341 - 1351
  • [47] Detecting COVID-19 patients based on fuzzy inference engine and Deep Neural Network
    Shaban, Warda M.
    Rabie, Asmaa H.
    Saleh, Ahmed I.
    Abo-Elsoud, M. A.
    APPLIED SOFT COMPUTING, 2021, 99
  • [48] Evaluation and Optimization of Biomedical Image-Based Deep Convolutional Neural Network Model for COVID-19 Status Classification
    Ghosh, Soumadip
    Banerjee, Suharta
    Das, Supantha
    Hazra, Arnab
    Mallik, Saurav
    Zhao, Zhongming
    Mukherji, Ayan
    APPLIED SCIENCES-BASEL, 2022, 12 (21):
  • [49] Masked Face Detection for Effective COVID-19 Containment: A Light Convolution Neural Network Based Model
    Salim, Nilu R.
    Sri, M. Yasolakshmi
    Jayaraman, Umarani
    PATTERN RECOGNITION AND MACHINE INTELLIGENCE, PREMI 2021, 2024, 13102 : 422 - 429
  • [50] DRESCNN: Deep RESNET Convolutional Neural Network Based Classification of X-Ray Images for Detection of COVID-19
    V. Bag, Vipul.
    Gaikwad, V. D.
    Patil, Mithun B.
    Swami, Kedar S.
    Abhang, Sandip P.
    Antad, Sonali M.
    Joshi-Bag, Shradha
    JOURNAL OF ELECTRICAL SYSTEMS, 2024, 20 (02) : 1415 - 1425