Design and Development of a Novel Biostretch Apparatus for Tissue Engineering

被引:12
作者
Pang, Qiming [1 ]
Zu, Jean W. [1 ]
Siu, Geoffrey M. [1 ]
Li, Ren-Ke [2 ]
机构
[1] Univ Toronto, Dept Mech & Ind Engn, Toronto, ON M5S 3G8, Canada
[2] Univ Toronto, Dept Surg, Toronto, ON M5S 3G8, Canada
来源
JOURNAL OF BIOMECHANICAL ENGINEERING-TRANSACTIONS OF THE ASME | 2010年 / 132卷 / 01期
基金
加拿大自然科学与工程研究理事会;
关键词
uniaxial stretch; bioreactor; scaffold; strain; IN-VITRO; MECHANICAL STIMULATION; CELLS; SYSTEM; SCAFFOLDS; STRETCH;
D O I
10.1115/1.3005154
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
A uniaxial cyclic stretch apparatus is designed and developed for tissue engineering research. The biostretch apparatus employs noncontact electromagnetic force to uniaxially stretch a rectangular Gelfoam(R) or RTV silicon scaffold. A reliable controller is implemented to control four stretch parameters independently: extent, frequency, pattern, and duration of the stretch. The noncontact driving force together with the specially designed mount allow researchers to use standard Petri dishes and commercially available CO2 incubators to culture an engineered tissue patch under well-defined mechanical conditions. The culture process is greatly simplified over existing processes. Further, beyond traditional uniaxial stretch apparatuses, which provide stretch by fixing one side of the scaffolds and stretching the other side, the new apparatus can also apply uniaxial stretch from both ends simultaneously. Using the biostretch apparatus, the distributions of the strain on the Gelfoam(R) and GE RTV 6166 silicon scaffolds are quantitatively analyzed [DOI: 10.1115/1.3005154]
引用
收藏
页数:4
相关论文
共 20 条
  • [1] Mechanical stretch regimen enhances the formation of bioengineered autologous cardiac muscle grafts
    Akhyari, P
    Fedak, PWM
    Weisel, RD
    Lee, TYJ
    Verma, S
    Mickle, DAG
    Li, RK
    [J]. CIRCULATION, 2002, 106 (13) : I137 - I142
  • [2] A three-dimensional in vitro model system to study the adaptation of craniofacial skeletal muscle following mechanostimulation
    Auluck, A
    Mudera, V
    Hunt, NP
    Lewis, MP
    [J]. EUROPEAN JOURNAL OF ORAL SCIENCES, 2005, 113 (03) : 218 - 224
  • [3] Mechanical properties and remodeling of hybrid cardiac constructs made from heart cells, fibrin, and biodegradable, elastomeric knitted fabric
    Boublik, J
    Park, H
    Radisic, M
    Tognana, E
    Chen, F
    Pei, M
    Vunjak-Novakovic, G
    Freed, LE
    [J]. TISSUE ENGINEERING, 2005, 11 (7-8): : 1122 - 1132
  • [4] Techniques for mechanical stimulation of cells in vitro: a review
    Brown, TD
    [J]. JOURNAL OF BIOMECHANICS, 2000, 33 (01) : 3 - 14
  • [5] Uniaxial strain system to investigate strain rate regulation in vitro
    Clark, CB
    Burkholder, TJ
    Frangos, JA
    [J]. REVIEW OF SCIENTIFIC INSTRUMENTS, 2001, 72 (05) : 2415 - 2422
  • [6] Static magnetic fields enhance skeletal muscle differentiation in vitro by improving myoblast alignment
    Coletti, Dario
    Teodori, Laura
    Albertini, Maria C.
    Rocchi, Marco
    Pristera, Alessandro
    Fini, Massimo
    Molinaro, Mario
    Adamo, Sergio
    [J]. CYTOMETRY PART A, 2007, 71A (10) : 846 - 856
  • [7] Engineering myocardial tissue
    Eschenhagen, T
    Zimmermann, WH
    [J]. CIRCULATION RESEARCH, 2005, 97 (12) : 1220 - 1231
  • [8] Effects of electromagnetic stimulation on calcified matrix production by SAOS-2 cells over a polyurethane porous scaffold
    Fassina, Lorenzo
    Visai, Livia
    Benazzo, Francesco
    Benedetti, Laura
    Calligaro, Alberto
    De Angelis, Maria Gabriella Cusella
    Farina, Aurora
    Maliardi, Valentina
    Magenes, Giovanni
    [J]. TISSUE ENGINEERING, 2006, 12 (07): : 1985 - 1999
  • [9] Feng ZG, 2005, IEEE ENG MED BIOL, V24, P73
  • [10] Chronic stretch of engineered heart tissue induces hypertrophy and functional improvement
    Fink, C
    Ergün, S
    Kralisch, D
    Remmers, U
    Weil, J
    Eschenhagen, T
    [J]. FASEB JOURNAL, 2000, 14 (05) : 669 - 679