Molecular Mechanisms of H-pylori-Induced DNA Double-Strand Breaks

被引:28
作者
Kidane, Dawit [1 ]
机构
[1] Univ Texas Austin, Coll Pharm, Div Pharmacol & Toxicol, Dell Pediat Res Inst, 1400 Barbara Jordan Blvd R1800, Austin, TX 78723 USA
基金
美国国家卫生研究院;
关键词
H; pylori; RONS; BER; DSBs; NF-B; NER; NF-KAPPA-B; BASE-EXCISION-REPAIR; NITRIC-OXIDE SYNTHASE; GASTRIC EPITHELIAL-CELLS; HELICOBACTER-PYLORI; GENOMIC INSTABILITY; CANCER-EPIDEMIOLOGY; MISMATCH REPAIR; DAMAGE RESPONSE; PROTEIN COMPLEX;
D O I
10.3390/ijms19102891
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Infections contribute to carcinogenesis through inflammation-related mechanisms. H. pylori infection is a significant risk factor for gastric carcinogenesis. However, the molecular mechanism by which H. pylori infection contributes to carcinogenesis has not been fully elucidated. H. pylori-associated chronic inflammation is linked to genomic instability via reactive oxygen and nitrogen species (RONS). In this article, we summarize the current knowledge of H. pylori-induced double strand breaks (DSBs). Furthermore, we provide mechanistic insight into how processing of oxidative DNA damage via base excision repair (BER) leads to DSBs. We review recent studies on how H. pylori infection triggers NF-B/inducible NO synthase (iNOS) versus NF-B/nucleotide excision repair (NER) axis-mediated DSBs to drive genomic instability. This review discusses current research findings that are related to mechanisms of DSBs and repair during H. pylori infection.
引用
收藏
页数:13
相关论文
共 125 条
[1]   KU70/80, DNA-PKcs, and Artemis are essential for the rapid induction of apoptosis after massive DSB formation [J].
Abe, Takuya ;
Ishiai, Masamichi ;
Hosono, Yoshifumi ;
Yoshimura, Akari ;
Tada, Shusuke ;
Adachi, Noritaka ;
Koyama, Hideki ;
Takata, Minoru ;
Takeda, Shunichi ;
Enomoto, Takemi ;
Seki, Masayuki .
CELLULAR SIGNALLING, 2008, 20 (11) :1978-1985
[2]  
Aburatani H, 1997, CANCER RES, V57, P2151
[3]   Role of redox potential and reactive oxygen species in stress signaling [J].
Adler, V ;
Yin, ZM ;
Tew, KD ;
Ronai, Z .
ONCOGENE, 1999, 18 (45) :6104-6111
[4]   XLF interacts with the XRCC4-DNA ligase IV complex to promote DNA nonhomologous end-joining [J].
Ahnesorg, P ;
Smith, P ;
Jackson, SP .
CELL, 2006, 124 (02) :301-313
[5]   Inherited variants of MYH associated with somatic G:C→T:A mutations in colorectal tumors [J].
Al-Tassan, N ;
Chmiel, NH ;
Maynard, J ;
Fleming, N ;
Livingston, AL ;
Williams, GT ;
Hodges, AK ;
Davies, DR ;
David, SS ;
Sampson, JR ;
Cheadle, JR .
NATURE GENETICS, 2002, 30 (02) :227-232
[6]   Orchestration of base excision repair by controlling the rates of enzymatic activities [J].
Allinson, SL ;
Sleeth, KM ;
Matthewman, GE ;
Dianov, GL .
DNA REPAIR, 2004, 3 (01) :23-31
[7]   DNA damage and repair: From molecular mechanisms to health implications [J].
Altieri, Fabio ;
Grillo, Caterina ;
Maceroni, Manola ;
Chichiarelli, Silvia .
ANTIOXIDANTS & REDOX SIGNALING, 2008, 10 (05) :891-937
[8]  
Bae Minkyung, 2013, J Cancer Prev, V18, P271
[9]   Phosphatases join kinases in DNA-damage response pathways [J].
Bakkenist, CJ ;
Kastan, MB .
TRENDS IN CELL BIOLOGY, 2004, 14 (07) :339-341
[10]   Inducible nitric oxide synthase mediates DNA double strand breaks in Human T-Cell Leukemia Virus Type 1-induced leukemia/lymphoma [J].
Baydoun, Hicham H. ;
Cherian, Mathew A. ;
Green, Patrick ;
Ratner, Lee .
RETROVIROLOGY, 2015, 12