Monodromies and Poincare series of quasihomogeneous complete intersections

被引:5
|
作者
Ebeling, W
Gusein-Zade, SM
机构
[1] Univ Hannover, Inst Math, D-30060 Hannover, Germany
[2] Moscow MV Lomonosov State Univ, Fac Mech & Math, Moscow 119992, Russia
来源
ABHANDLUNGEN AUS DEM MATHEMATISCHEN SEMINAR DER UNIVERSITAT HAMBURG | 2004年 / 74卷 / 1期
关键词
quasi homogeneous complete intersection; Poincare series; zeta function of monodromy;
D O I
10.1007/BF02941533
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give a formula connecting the Saito duals of the reduced zeta functions of the monodromies of defining equations of a quasihomogeneous complete intersection, the Poincare series of its coordinate ring, and orbit invariants with respect to the natural C*-action.
引用
收藏
页码:175 / 179
页数:5
相关论文
共 50 条
  • [1] Monodromies and poincaré series of quasihomogeneous complete intersections
    W. Ebeling
    S. M. Gusein-Zade
    Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, 2004, 74 : 175 - 179
  • [2] Poincare series and zeta function of the monodromy of a quasihomogeneous singularity
    Ebeling, W
    Gusein-Zade, SM
    MATHEMATICAL RESEARCH LETTERS, 2002, 9 (04) : 509 - 513
  • [3] Equivariant Poincare Series and Monodromy Zeta Functions of Quasihomogeneous Polynomials
    Ebeling, Wolfgang
    Gusein-Zade, Sabir M.
    PUBLICATIONS OF THE RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, 2012, 48 (03) : 653 - 660
  • [4] Poincare series of fiber products and weak complete intersection ideals
    Rahmati, Hamidreza
    Striuli, Janet
    Yang, Zheng
    JOURNAL OF ALGEBRA, 2018, 498 : 129 - 152
  • [5] On Poincare Series of Filtrations
    Campillo, A.
    Delgado, F.
    Gusein-Zade, S. M.
    AZERBAIJAN JOURNAL OF MATHEMATICS, 2015, 5 (02): : 125 - 139
  • [6] Uninhibited Poincare series
    Pribitkin, Wladimir De Azevedo
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2007, 3 (03) : 335 - 347
  • [7] The Poincare series of multiplier ideals of a simple complete ideal in a local ring of a smooth surface
    Galindo, Carlos
    Monserrat, Francisco
    ADVANCES IN MATHEMATICS, 2010, 225 (02) : 1046 - 1068
  • [8] Nonvanishing of Siegel Poincare series
    Das, Soumya
    Sengupta, Jyoti
    MATHEMATISCHE ZEITSCHRIFT, 2012, 272 (3-4) : 869 - 883
  • [9] A Poincare series on hyperbolic space
    Basak, Tathagata
    ADVANCES IN APPLIED MATHEMATICS, 2018, 95 : 177 - 198
  • [10] Poincare series in Clifford analysis
    Krausshar, RS
    CLIFFORD ALGEBRAS: APPLICATIONS TO MATHEMATICS, PHYSICS, AND ENGINEERING, 2004, 34 : 75 - 89