KPZ UNIVERSALITY FOR KPZ

被引:5
作者
Quastel, Jeremy [1 ]
机构
[1] Univ Toronto, Dept Math, Toronto, ON M5S 1L2, Canada
来源
XVITH INTERNATIONAL CONGRESS ON MATHEMATICAL PHYSICS | 2010年
关键词
Kardar-Parisi-Zhang equation; stochastic Burgers equation; scaling exponent; asymmetric simple exclusion; EQUATIONS;
D O I
10.1142/9789814304634_0030
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Bertini and Giacomin [1] propose the logarithm h(t, x) = -log Z(t, x) of the solution stochastic heat equation as the solution to the Kardar-Parisi-Zhang equation. We survey recent work with Balazs and Seppalainen showing that various quantities have the conjectured dynamic scaling exponent z = 2/3. We also present a slightly different version of the computation in [1] suggesting that h solves a version with Wick-ordered nonlinearity.
引用
收藏
页码:401 / 405
页数:5
相关论文
共 10 条
[1]  
BALAZS M, SCALING EXPONE UNPUB
[2]  
Balázs M, 2009, ALEA-LAT AM J PROBAB, V6, P1
[3]   Stochastic burgers and KPZ equations from particle systems [J].
Bertini, L ;
Giacomin, G .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1997, 183 (03) :571-607
[4]   Scaling limits of Wick ordered KPZ equation [J].
Chan, T .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2000, 209 (03) :671-690
[5]  
Da Prato G., 2004, ADV COURSES MATH
[6]   A modified Kardar-Parisi-Zhang model [J].
Da Prato, Giuseppe ;
Debussche, Arnaud ;
Tubaro, Luciano .
ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2007, 12 :442-453
[7]   LARGE-DISTANCE AND LONG-TIME PROPERTIES OF A RANDOMLY STIRRED FLUID [J].
FORSTER, D ;
NELSON, DR ;
STEPHEN, MJ .
PHYSICAL REVIEW A, 1977, 16 (02) :732-749
[8]  
Holden H., 1996, Stochastic Partial Differential Equations
[9]   DYNAMIC SCALING OF GROWING INTERFACES [J].
KARDAR, M ;
PARISI, G ;
ZHANG, YC .
PHYSICAL REVIEW LETTERS, 1986, 56 (09) :889-892
[10]  
WALSH JB, 1986, LECT NOTES MATH, V1180, P265