Parameter estimation algorithms for dynamical response signals based on the multi-innovation theory and the hierarchical principle

被引:125
|
作者
Xu, Ling [1 ,2 ]
Ding, Feng [1 ]
机构
[1] Jiangnan Univ, Sch Internet Things Engn, Minist Educ, Key Lab Adv Proc Control Light Ind, Wuxi 214122, Peoples R China
[2] Wuxi Vocat Inst Commerce, Sch Internet Things Technol, Wuxi 214153, Peoples R China
基金
中国国家自然科学基金;
关键词
IDENTIFICATION METHOD; SYSTEMS;
D O I
10.1049/iet-spr.2016.0220
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this study, the authors consider the parameter estimation problem of the response signal from a highly non-linear dynamical system. The step response experiment is taken for generating the measured data. Considering the stochastic disturbance in the industrial process and using the gradient search, a multi-innovation stochastic gradient algorithm is proposed through expanding the scalar innovation into an innovation vector in order to obtain more accurate parameter estimates. Furthermore, a hierarchical identification algorithm is derived by means of the decomposition technique and interaction estimation theory. Regarding to the coupled parameter problem between subsystems, the authors put forward the scheme of replacing the unknown parameters with their previous parameter estimates to realise the parameter estimation algorithm. Finally, several examples are provided to access and compare the behaviour of the proposed identification techniques.
引用
收藏
页码:228 / 237
页数:10
相关论文
共 50 条
  • [1] Multi-innovation gradient parameter estimation for multivariable systems based on the maximum likelihood principle
    Xia, Huafeng
    Xu, Sheng
    Zhou, Cheng
    Chen, Feiyan
    OPTIMAL CONTROL APPLICATIONS & METHODS, 2022, 43 (01): : 106 - 122
  • [2] Multi-innovation least squares parameter estimation algorithms for stochastic regression models
    Ding, Feng
    Liu, Peter X.
    2008 IEEE INSTRUMENTATION AND MEASUREMENT TECHNOLOGY CONFERENCE, VOLS 1-5, 2008, : 933 - +
  • [3] Parameter Estimation and Model-free Multi-innovation Adaptive Control Algorithms
    Liu, Xin
    Qin, Pinle
    INTERNATIONAL JOURNAL OF CONTROL AUTOMATION AND SYSTEMS, 2024, 22 (11) : 3509 - 3524
  • [4] Parameter Identification of Wiener Models by Multi-innovation Algorithms
    Yao, Jian
    Huang, Yanping
    Ji, Zhicheng
    INTERNATIONAL JOURNAL OF CONTROL AUTOMATION AND SYSTEMS, 2013, 11 (06) : 1170 - 1176
  • [5] Parameter identification of wiener models by multi-innovation algorithms
    Jian Yao
    Yanping Huang
    Zhicheng Ji
    International Journal of Control, Automation and Systems, 2013, 11 : 1170 - 1176
  • [6] The improved multi-innovation parameter estimation algorithms for the sine signal modeling with the single-frequency
    Xu, Ling
    Ding, Feng
    Zhang, Xiao
    PROCEEDINGS OF 2018 10TH INTERNATIONAL CONFERENCE ON MODELLING, IDENTIFICATION AND CONTROL (ICMIC), 2018,
  • [7] Parameter estimation for nonlinear systems by using the data filtering and the multi-innovation identification theory
    Mao, Yawen
    Ding, Feng
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2016, 93 (11) : 1869 - 1885
  • [8] Multi-innovation gradient parameter estimation algorithms for closed-loop Hammerstein nonlinear systems
    Xu, Ling
    Shen, Bingbing
    Ding, Feng
    Wang, Dongqing
    2017 AMERICAN CONTROL CONFERENCE (ACC), 2017, : 152 - 157
  • [9] Parameter identification of a class of nonlinear systems based on the multi-innovation identification theory
    Wang, Cheng
    Zhu, Li
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2015, 352 (10): : 4624 - 4637
  • [10] Self-tuning control based on multi-innovation stochastic gradient parameter estimation
    Zhang, Jiabo
    Ding, Feng
    Shi, Yang
    SYSTEMS & CONTROL LETTERS, 2009, 58 (01) : 69 - 75