The application of extended tanh-function approach in Toda lattice equations

被引:6
作者
Dai, Chaoqing [1 ]
Ni, Yongzhou [1 ]
机构
[1] Zhejiang Forestry Univ, Dept Informat Phys, Sch Sci, Zhejiang 311300, Linan, Peoples R China
关键词
Toda lattice equations; extended tanh-function method;
D O I
10.1007/s10773-006-9285-y
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we generalize the extended tanh-function approach, which used to find new exact travelling wave solutions of nonlinear partial differential equations (NPDES) or coupled nonlinear partial differential equations, to nonlinear differential-difference equations (NDDES). As illustration, we discuss some Toda lattice equations, and solitary wave and periodic wave solutions of these Toda lattice equations are obtained by means of the extended tanh-function approach.
引用
收藏
页码:1455 / 1465
页数:11
相关论文
共 16 条
[1]  
ABLOWITZ MJ, 1978, STUD APPL MATH, V58, P17
[2]  
[Anonymous], 1965, COLLECTED PAPERS E F
[3]   Symbolic computation of hyperbolic tangent solutions for nonlinear differential-difference equations [J].
Baldwin, D ;
Göktas, Ü ;
Hereman, W .
COMPUTER PHYSICS COMMUNICATIONS, 2004, 162 (03) :203-217
[4]   Jacobian elliptic function method for nonlinear differential-difference equations [J].
Dai, CQ ;
Zhang, JF .
CHAOS SOLITONS & FRACTALS, 2006, 27 (04) :1042-1047
[5]  
Dai CQ, 2004, Z NATURFORSCH A, V59, P635
[6]   Extended tanh-function method and its applications to nonlinear equations [J].
Fan, EG .
PHYSICS LETTERS A, 2000, 277 (4-5) :212-218
[7]   Computation of densities and fluxes of nonlinear differential-difference equations [J].
Hickman, MS ;
Hereman, WA .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2003, 459 (2039) :2705-2729
[8]   THE CONSERVED QUANTITIES AND SYMMETRIES OF THE 2-DIMENSIONAL TODA LATTICE HIERARCHY [J].
KAJIWARA, K ;
SATSUMA, J .
JOURNAL OF MATHEMATICAL PHYSICS, 1991, 32 (02) :506-514
[9]   Variable separation approach for a differential-difference system: special Toda equation [J].
Qian, XM ;
Lou, SY ;
Hu, XB .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2004, 37 (06) :2401-2411
[10]   Variable separation approach for a differential-difference asymmetric Nizhnik-Novikov-Veselov equation [J].
Qian, XM ;
Lou, SY ;
Hu, XB .
ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2004, 59 (10) :645-658