Discontinuous Galerkin methods for the linear Schrodinger equation in non-cylindrical domains

被引:14
作者
Antonopoulou, D. C. [1 ,2 ]
Plexousakis, M. [1 ,2 ]
机构
[1] Univ Crete, Dept Appl Math, Iraklion 71409, Crete, Greece
[2] FORTH, Inst Appl & Computat Math, Iraklion 71110, Crete, Greece
关键词
PARABOLIC EQUATION; FINITE-ELEMENTS; TIME; SPACE;
D O I
10.1007/s00211-010-0296-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The convergence of a discontinuous Galerkin method for the linear Schrodinger equation in non-cylindrical domains of R-m, m >= 1, is analyzed in this paper. We show the existence of the resulting approximations and prove stability and error estimates in finite element spaces of general type. When m = 1 the resulting problem is related to the standard narrow angle 'parabolic' approximation of the Helmholtz equation, as it appears in underwater acoustics. In this case we investigate theoretically and numerically the order of convergence using finite element spaces of piecewise polynomial functions.
引用
收藏
页码:585 / 608
页数:24
相关论文
共 23 条
[1]   BOUNDARY-CONDITIONS FOR THE PARABOLIC EQUATION IN A RANGE-DEPENDENT DUCT [J].
ABRAHAMSSON, L ;
KREISS, HO .
JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1990, 87 (06) :2438-2441
[2]   Galerkin time-stepping methods for nonlinear parabolic equations [J].
Akrivis, G ;
Makridakis, C .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2004, 38 (02) :261-289
[3]   Finite difference schemes for the "parabolic" equation in a variable depth environment with a rigid bottom boundary condition [J].
Akrivis, GD ;
Dougalis, VA ;
Zouraris, GE .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2001, 39 (02) :539-565
[4]  
[Anonymous], 1974, PUBLICATIONS MATH IN
[5]  
[Anonymous], ANN MAT PURA APPL
[6]  
ANTONOPOULOU DC, 2006, THESIS U ATHENS
[7]  
AZIZ AK, 1989, MATH COMPUT, V52, P255, DOI 10.1090/S0025-5718-1989-0983310-2
[8]  
Brenner S. C., 2007, MATH THEORY FINITE E
[9]  
BROCEHN A, 1980, THESIS U GOTEBORG SW
[10]   An a priori error analysis of the local discontinuous Galerkin method for elliptic problems [J].
Castillo, P ;
Cockburn, B ;
Perugia, I ;
Shötzau, D .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2000, 38 (05) :1676-1706