Generalization of some fractional versions of Hadamard inequalities via exponentially (α, h - m)-convex functions

被引:5
作者
Lv, Yu-Pei [1 ]
Farid, Ghulam [2 ]
Yasmeen, Hafsa [2 ]
Nazeer, Waqas [3 ]
Jung, Chahn Yong [4 ]
机构
[1] Huzhou Univ, Dept Math, Huzhou 313000, Peoples R China
[2] COMSATS Univ Islamabad, Dept Math, Attock Campus, Attock, Pakistan
[3] Govt Coll Univ Lahore, Dept Math, Lahore, Pakistan
[4] Gyeongsang Natl Univ, Dept Business Adm, Jinju 52828, South Korea
来源
AIMS MATHEMATICS | 2021年 / 6卷 / 08期
基金
加拿大自然科学与工程研究理事会;
关键词
(alpha; h - m)-convex function; exponentionally; Hadamard inequality; Riemann-Liouville fractional integrals; M-CONVEX FUNCTIONS; DIFFERENTIABLE MAPPINGS; REAL NUMBERS;
D O I
10.3934/math.2021521
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we give Hadamard inequalities for exponentially (alpha, h - m)-convex functions using Riemann-Liouville fractional integrals for strictly increasing function. Results for RiemannLiouville fractional integrals of convex, m-convex, s-convex, (alpha, m)-convex, (s, m)-convex, (h - m) convex, (alpha, h - m)-convex, exponentially convex, exponentially m-convex, exponentially s-convex, exponentially (s, m)-convex, exponentially (h - m)-convex, exponentially (alpha, h - m)-convex functions are particular cases of the results of this paper. The error estimations of these inequalities by using two fractional integral identities are also given.
引用
收藏
页码:8978 / 8999
页数:22
相关论文
共 50 条
  • [41] Some weighted Hadamard and Ostrowski-type fractional inequalities for quasi-geometrically convex functions
    Kalsoom, Humaira
    Latif, Muhammad Amer
    FILOMAT, 2023, 37 (18) : 5921 - 5942
  • [42] Some inequalities of Hermite-Hadamard type for functions whose second derivatives are (α, m)-convex
    Shuang, Ye
    Qi, Feng
    Wang, Yan
    JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2016, 9 (01): : 139 - 148
  • [43] Hermite-Hadamard-type inequalities for strongly (α, m)-convex functions via quantum calculus
    Mishra, Shashi Kant
    Sharma, Ravina
    Bisht, Jaya
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2024, 70 (05) : 4971 - 4994
  • [44] Hermite-Hadamard type inequalities for (α, m)-HA and strongly (α, m)-HA convex functions
    He, Chun-Ying
    Wang, Yan
    Xi, Bo-Yan
    Qi, Feng
    JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2017, 10 (01): : 205 - 214
  • [45] Generalization of Some Fractional Integral Operator Inequalities for Convex Functions via Unified Mittag-Leffler Function
    Nonlaopon, Kamsing
    Farid, Ghulam
    Yasmeen, Hafsa
    Shah, Farooq Ahmed
    Jung, Chahn Yong
    SYMMETRY-BASEL, 2022, 14 (05):
  • [46] SOME NEW HADAMARD TYPE INEQUALITIES FOR CO-ORDINATED m-CONVEX AND (α, m)-CONVEX FUNCTIONS
    Ozdemir, M. Emin
    Set, Erhan
    Sarikaya, Mehmet Zeki
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2011, 40 (02): : 219 - 229
  • [47] Refinements of some fractional integral inequalities for refined (α, h - m)-convex function
    Jung, Chahn Yong
    Farid, Ghulam
    Yasmeen, Hafsa
    Lv, Yu-Pei
    Pecaric, Josip
    ADVANCES IN DIFFERENCE EQUATIONS, 2021, 2021 (01):
  • [48] Generalizations of fractional Hermite-Hadamard-Mercer like inequalities for convex functions
    Vivas-Cortez, Miguel
    Ali, Muhammad Aamir
    Kashuri, Artion
    Budak, Huseyin
    AIMS MATHEMATICS, 2021, 6 (09): : 9397 - 9421
  • [49] Some fractional integral inequalities involving m-convex functions
    Jleli, Mohamed
    O'Regan, Donal
    Samet, Bessem
    AEQUATIONES MATHEMATICAE, 2017, 91 (03) : 479 - 490
  • [50] The Left Conformable Fractional Hermite-Hadamard Type Inequalities for Convex Functions
    Turhan, Sercan
    FILOMAT, 2019, 33 (08) : 2417 - 2430