Generalization of some fractional versions of Hadamard inequalities via exponentially (α, h - m)-convex functions

被引:5
作者
Lv, Yu-Pei [1 ]
Farid, Ghulam [2 ]
Yasmeen, Hafsa [2 ]
Nazeer, Waqas [3 ]
Jung, Chahn Yong [4 ]
机构
[1] Huzhou Univ, Dept Math, Huzhou 313000, Peoples R China
[2] COMSATS Univ Islamabad, Dept Math, Attock Campus, Attock, Pakistan
[3] Govt Coll Univ Lahore, Dept Math, Lahore, Pakistan
[4] Gyeongsang Natl Univ, Dept Business Adm, Jinju 52828, South Korea
来源
AIMS MATHEMATICS | 2021年 / 6卷 / 08期
基金
加拿大自然科学与工程研究理事会;
关键词
(alpha; h - m)-convex function; exponentionally; Hadamard inequality; Riemann-Liouville fractional integrals; M-CONVEX FUNCTIONS; DIFFERENTIABLE MAPPINGS; REAL NUMBERS;
D O I
10.3934/math.2021521
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we give Hadamard inequalities for exponentially (alpha, h - m)-convex functions using Riemann-Liouville fractional integrals for strictly increasing function. Results for RiemannLiouville fractional integrals of convex, m-convex, s-convex, (alpha, m)-convex, (s, m)-convex, (h - m) convex, (alpha, h - m)-convex, exponentially convex, exponentially m-convex, exponentially s-convex, exponentially (s, m)-convex, exponentially (h - m)-convex, exponentially (alpha, h - m)-convex functions are particular cases of the results of this paper. The error estimations of these inequalities by using two fractional integral identities are also given.
引用
收藏
页码:8978 / 8999
页数:22
相关论文
共 50 条
  • [31] ON SOME INEQUALITIES OF HERMITE-HADAMARD TYPE FOR CONVEX FUNCTIONS
    Sarikaya, Mehmet Zeki
    Avci, Merve
    Kavurmaci, Havva
    ICMS: INTERNATIONAL CONFERENCE ON MATHEMATICAL SCIENCE, 2010, 1309 : 852 - +
  • [32] On Hadamard inequalities for refined convex functions via strictly monotone functions
    Zahra, Moquddsa
    Abuzaid, Dina
    Farid, Ghulam
    Nonlaopon, Kamsing
    AIMS MATHEMATICS, 2022, 7 (11): : 20043 - 20057
  • [33] Integral inequalities of Hermite-Hadamard type for (α, s)-convex and (α, s,m)-convex functions
    Xi, Bo-Yan
    Gao, Dan-Dan
    Qi, Feng
    ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2020, (44): : 499 - 510
  • [34] Hadamard and Fejér–Hadamard type inequalities for harmonically convex functions via generalized fractional integrals
    Abbas G.
    Farid G.
    The Journal of Analysis, 2017, 25 (1) : 107 - 119
  • [35] GENERALIZATION OF INEQUALITIES ANALOGOUS TO HERMITE HADAMARD INEQUALITY VIA FRACTIONAL INTEGRALS
    Iqbal, Muhammad
    Bhatti, Muhammad Iqbal
    Nazeer, Kiran
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2015, 52 (03) : 707 - 716
  • [36] SOME FRACTIONAL HERMITE-HADAMARD INEQUALITIES FOR CONVEX AND GODUNOVA-LEVIN FUNCTIONS
    Li, Mengmeng
    Wang, JinRong
    Wei, Wei
    FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2015, 30 (02): : 195 - 208
  • [37] On some inequalities related to fractional Hermite-Hadamard type for differentiable convex functions
    Budak, Huseyin
    Kara, Hasan
    Ali, Muhammad Aamir
    Kiris, Mehmet Eyup
    ANNALS OF THE UNIVERSITY OF CRAIOVA-MATHEMATICS AND COMPUTER SCIENCE SERIES, 2021, 48 (02): : 222 - 233
  • [38] On some Hermite-Hadamard type inequalities for tgs-convex functions via generalized fractional integrals
    Mehreen, Naila
    Anwar, Matloob
    ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01):
  • [39] Refinements and Generalizations of Some Fractional Integral Inequalities via Strongly Convex Functions
    Farid, Ghulam
    Yasmeen, Hafsa
    Jung, Chahn Yong
    Shim, Soo Hak
    Ha, Gaofan
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2021, 2021
  • [40] Inequalities Pertaining Fractional Approach through Exponentially Convex Functions
    Rashid, Saima
    Noor, Muhammad Aslam
    Noor, Khalida Inayat
    FRACTAL AND FRACTIONAL, 2019, 3 (03) : 1 - 14