On non-normal arc-transitive 4-valent dihedrants

被引:17
作者
Kovacs, Istvan [2 ]
Kuzman, Bostjan [1 ]
Malnic, Aleksander [3 ]
机构
[1] Univ Ljubljana, PeF, Ljubljana 1000, Slovenia
[2] Univ Primorska, FAMNIT, Koper 6000, Slovenia
[3] Univ Ljubljana, IMFM, Ljubljana 1111, Slovenia
关键词
Cayley graph; arc transitivity; dihedral group; CAYLEY-GRAPHS;
D O I
10.1007/s10114-010-8271-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let X be a connected non-normal 4-valent arc-transitive Cayley graph on a dihedral group D (n) such that X is bipartite, with the two bipartition sets being the two orbits of the cyclic subgroup within D (n) . It is shown that X is isomorphic either to the lexicographic product C (n) [2K (1)] with n a parts per thousand yen 4 even, or to one of the five sporadic graphs on 10, 14, 26, 28 and 30 vertices, respectively.
引用
收藏
页码:1485 / 1498
页数:14
相关论文
共 20 条
[1]  
[Anonymous], 2006, GRAPH THEORY
[2]  
Baik Y. G., 1998, ALGEBRA C, V5, P227
[3]   The Magma algebra system .1. The user language [J].
Bosma, W ;
Cannon, J ;
Playoust, C .
JOURNAL OF SYMBOLIC COMPUTATION, 1997, 24 (3-4) :235-265
[4]  
[王长群 ChangQun WANG], 2006, [数学学报, Acta Mathematica Sinica], V49, P669
[5]  
Dickson J. D., 1996, GRADUATE TEXTS MATH, V163
[6]   Classification of 2-arc-transitive dihedrants [J].
Du, Shaofei ;
Malnic, Aleksander ;
Marusic, Dragan .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 2008, 98 (06) :1349-1372
[7]  
Gross Jonathan L., 1987, Topological Graph Theory
[8]   Classifying arc-transitive circulants [J].
Kovács, I .
JOURNAL OF ALGEBRAIC COMBINATORICS, 2004, 20 (03) :353-358
[9]   Classification of Edge-Transitive Rose Window Graphs [J].
Kovacs, Istvan ;
Kutnar, Klavdija ;
Marusic, Dragan .
JOURNAL OF GRAPH THEORY, 2010, 65 (03) :216-231
[10]   One-regular normal Cayley graphs on dihedral groups of valency 4 or 6 with cyclic vertex stabilizer [J].
Kwak, Jin Ho ;
Oh, Ju Mok .
ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2006, 22 (05) :1305-1320