A replicator equations-based evolutionary algorithm for the maximum clique problem

被引:0
作者
Rossi, C [1 ]
机构
[1] Univ Ca Foscari Venezia, Dipartimento Informat, I-30173 Venice, Italy
来源
PROCEEDINGS OF THE 2000 CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1 AND 2 | 2000年
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper we propose a heuristic based evolutionary algorithm for the Maximum Clique Problem. The algorithm is based on a local search heuristic centered on a continuous formulation of the problem which is approached with a class of dynamical systems called Replicator Equations. We show how, embedding this local search heuristic within an evolutionary algorithm, help the replicator equations heuristic to find larger cliques, and lead to an effective algorithm for the Maximum Clique Problem. Experimental results performed on a class of benchmark instances from the literature assess the effectiveness of the proposed algorithm.
引用
收藏
页码:1565 / 1570
页数:6
相关论文
共 20 条
[1]  
[Anonymous], 1979, Computers and Intractablity: A Guide to the Theoryof NP-Completeness
[2]  
[Anonymous], CLIQUES COLORING SAT
[3]  
Bomze I., 1999, Handbook of Combinatorial Optimization, VA
[4]   Evolution towards the maximum clique [J].
Bomze, IM .
JOURNAL OF GLOBAL OPTIMIZATION, 1997, 10 (02) :143-164
[5]  
BOMZE IM, 1997, DEV GLOBAL OPTIMIZAT, P95
[6]  
BOMZE IM, IN PRESS DISCRETE AP
[7]  
BOMZE IM, 1988, HIGH PERFORMANCE ALG, P53
[8]   The variant call format and VCFtools [J].
Danecek, Petr ;
Auton, Adam ;
Abecasis, Goncalo ;
Albers, Cornelis A. ;
Banks, Eric ;
DePristo, Mark A. ;
Handsaker, Robert E. ;
Lunter, Gerton ;
Marth, Gabor T. ;
Sherry, Stephen T. ;
McVean, Gilean ;
Durbin, Richard .
BIOINFORMATICS, 2011, 27 (15) :2156-2158
[9]   Clique is hard to approximate within n(1-epsilon) [J].
Hastad, J .
37TH ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, PROCEEDINGS, 1996, :627-636
[10]  
HASTAD J, 1988, THEORY EVOLUTION DYN