Thermal cycling behaviors of the plasma sprayed thermal barrier coatings of hexaluminates with magnetoplumbite structure

被引:82
作者
Chen, Xiaolong [1 ,2 ]
Zhang, Yanfei [1 ,2 ]
Zhong, Xinhua [1 ,2 ]
Xu, Zhenhua [1 ,2 ]
Zhang, Jiangfeng [1 ,2 ]
Cheng, Yongliang [1 ,2 ]
Zhao, Yu [1 ,2 ]
Liu, Yangjia [3 ]
Fan, Xizhi [3 ]
Wang, Ying [1 ]
Ma, Hongmei [1 ]
Cao, Xueqiang [1 ]
机构
[1] Chinese Acad Sci, Changchun Inst Appl Chem, State Key Lab Rare Earth Resources Utilizat, Changchun 130022, Peoples R China
[2] Chinese Acad Sci, Grad Sch, Beijing 100049, Peoples R China
[3] Changsha Univ Sci & Technol, Hunan Prov Key Lab Mat Protect Elect Power & Tran, Changsha 410004, Hunan, Peoples R China
关键词
Thermal barrier coatings; Magnetoplumbite; Plasma spraying; Thermal cycling behavior; ABNORMAL GRAIN-GROWTH; LANTHANUM HEXAALUMINATE; CALCIUM HEXALUMINATE; CERIUM OXIDE; CONDUCTIVITY; ZIRCONATE; ALUMINA;
D O I
10.1016/j.jeurceramsoc.2010.01.013
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Hexaluminates with magnetoplumbite structure are important high temperature ceramic materials for thermal barrier coatings (TBCs) Four hexaluminate coatings including NdMgAl11O19 (NdMA), SmMgAl11O19 (SmMA), GdMgAl11O19 (GdMA) and SrAl12O19 (SrHA) were prepared by plasma spraying During plasma spraying, rare earth (RE) hexaluminates are partially decomposed, resulting in the loss of MgO. For RE hexaluminate coatings, the thermal cycling lifetime decreases with the reduction of RE3+ radius, while SrHA has the shortest lifetime The random arrangement of the platelet-like hexagonal crystals resulted from the recrystallization during thermal cycling may reduce the bond strength of the coatings and make a huge contribution to coatings failure The different thermal cycling behaviors of these coatings seem to be dependent on their recrystallization differences to a large extent (C) 2010 Elsevier Ltd. All rights reserved
引用
收藏
页码:1649 / 1657
页数:9
相关论文
共 34 条
  • [1] Thermal properties of oxides with magnetoplumbite structure for advanced thermal barrier coatings
    Bansal, Narottam P.
    Zhu, Dongming
    [J]. SURFACE & COATINGS TECHNOLOGY, 2008, 202 (12) : 2698 - 2703
  • [2] Failure of the plasma-sprayed coating of lanthanum hexaluminate
    Cao, X. Q.
    Zhang, Y. F.
    Zhang, J. F.
    Zhong, X. H.
    Wang, Y.
    Ma, H. M.
    Xu, Z. H.
    He, L. M.
    Lu, F.
    [J]. JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2008, 28 (10) : 1979 - 1986
  • [3] Ceramic materials for thermal barrier coatings
    Cao, XQ
    Vassen, R
    Stoever, D
    [J]. JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2004, 24 (01) : 1 - 10
  • [4] Lanthanum-cerium oxide as a thermal barrier-coating material for high-temperature applications
    Cao, XQ
    Vassen, R
    Fischer, W
    Tietz, F
    Jungen, W
    Stöver, D
    [J]. ADVANCED MATERIALS, 2003, 15 (17) : 1438 - 1442
  • [5] Cao XQ, 2007, J MATER SCI TECHNOL, V23, P15
  • [6] Choi SR, 2005, CERAM ENG SCI PROC, V26, P11
  • [7] Thermal barrier coating materials
    Clarke, David R.
    Phillpot, Simon R.
    [J]. MATERIALS TODAY, 2005, 8 (06) : 22 - 29
  • [8] Materials selection guidelines for low thermal conductivity thermal barrier coatings
    Clarke, DR
    [J]. SURFACE & COATINGS TECHNOLOGY, 2003, 163 : 67 - 74
  • [9] Materials design for the next generation thermal barrier coatings
    Clarke, DR
    Levi, CG
    [J]. ANNUAL REVIEW OF MATERIALS RESEARCH, 2003, 33 : 383 - 417
  • [10] Neodymium-cerium oxide as new thermal barrier coating material
    Dai, Hui
    Zhong, Xinghua
    Li, Jiayan
    Meng, Jian
    Cao, Xueqiang
    [J]. SURFACE & COATINGS TECHNOLOGY, 2006, 201 (06) : 2527 - 2533