Subharmonic behavior and quasiconformal mappings

被引:35
作者
Todorcevic, Vesna [1 ,2 ]
机构
[1] Univ Belgrade, Fac Org Sci, Belgrade, Serbia
[2] Serbian Acad Arts & Sci, Math Inst, Belgrade, Serbia
关键词
MAXIMAL FUNCTIONS; INEQUALITIES;
D O I
10.1007/s13324-019-00308-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We give an overview of some results on the class of functions with subharmonic behaviour and their invariance properties under conformal and quasiconformal mappings. While many of the results we present will be related to author's own work, we shall present also some other results and examples about this class of functions.
引用
收藏
页码:1211 / 1225
页数:15
相关论文
共 27 条
[1]  
Ahern P., 1988, Rev. Mat. Iberoam., V4, P123, DOI DOI 10.4171/RMI/66
[2]  
[Anonymous], 1993, OXFORD MATH MONOGR
[3]  
[Anonymous], 1981, BOUNDED ANAL FUNCTIO
[4]  
ASTALA K, 1983, MICH MATH J, V30, P209
[5]  
COIFMAN RR, 1974, STUD MATH, V51, P241
[6]   The minimal operator and the geometric maximal operator in Rn [J].
Cruz-Uribe, D .
STUDIA MATHEMATICA, 2001, 144 (01) :1-37
[7]  
Dovgoshey O., 2010, INT J MATH MATH SCI, V2010, P8, DOI [10.1155/2010/382179, DOI 10.1155/2010/382179]
[8]  
DUREN PL, 1983, FUNDAMENTAL PRINCIPL, V259
[9]  
FEFFERMAN C, 1972, ACTA MATH-UPPSALA, V129, P137, DOI 10.1007/BF02392215
[10]  
Hardy GH, 1932, J REINE ANGEW MATH, V167, P405