Investigating the role of reduced graphene oxide as a universal additive in planar perovskite solar cells

被引:47
作者
Balis, Nikolaos [1 ]
Zaky, Alaa A. [1 ,2 ]
Athanasekou, Chrysoula [1 ]
Silva, Adrian M. T. [3 ]
Sakellis, Elias [1 ]
Vasilopoulou, Maria [1 ]
Stergiopoulos, Thomas [4 ]
Kontos, Athanassios G. [1 ]
Falaras, Polycarpos [1 ]
机构
[1] Natl Ctr Sci Res Demokritos, Inst Nanosci & Nanotechnol, Athens 15341, Greece
[2] NTUA, Sch Elect & Comp Engn, Athens 15780, Greece
[3] Univ Porto, Fac Engn, LSRE, LCM, Rua Dr Roberto Frias, P-4200465 Porto, Portugal
[4] Aristotle Univ Thessaloniki, Dept Chem, Lab Phys Chem, Thessaloniki 54124, Greece
基金
欧盟地平线“2020”;
关键词
Planar perovskite solar cells; Titania compact layer; MAPbI(3) absorber; Lead acetate; Reduced graphene oxide; HOLE-TRANSPORTING MATERIAL; ENHANCED PERFORMANCE; HALIDE PEROVSKITES; EFFICIENCY; LAYER; TIO2; HYSTERESIS; STATE; DEGRADATION; MORPHOLOGY;
D O I
10.1016/j.jphotochem.2019.112141
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this work we present the effects of the incorporation of reduced graphene oxide (rGO) nanoflakes into the titania compact layer, the methylammonium lead iodide (CH3NH3PbI3) absorber and the Spiro-MeOTAD hole transporter which are typical components of a planar perovskite solar cell (PSC). The addition of rGO within the TiO2 electron transport layer (ETL) offers fast electron transport rates toward the anode and favors the growth of large, uniform perovskite crystals. When added in MAPbI(3), rGO further increases the perovskite grains size and creates a more homogenous and smooth film with enhanced crystallinity, thus improving the power conversion efficiency (PCE) of the corresponding PSC. On the contrary, its presence in Spiro-MeOTAD is detrimental for the cells performance. For the first time in the literature a graphene derivative favors the performance of a MAPbI(3)-based PSC when incorporated as an additive in both the ETL and the perovskite absorber. As a result, we obtained devices with optimized electrical characteristics, resulting to stabilized 13.6% PCE, outperforming by 20% the reference (rGO-free) ones. Moreover, the presence of rGO offered additional stability to the solar cells which retained 40% of their initial PCE after 50 days of storage in mildly humid, dark environment.
引用
收藏
页数:8
相关论文
共 60 条
[1]   Compact TiO2 films with sandwiched Ag nanoparticles as electron-collecting layer in planar type perovskite solar cells: improvement in efficiency and stability [J].
Abate, Seid Yimer ;
Wu, Wen-Ti ;
Pola, Someshwar ;
Tao, Yu-Tai .
RSC ADVANCES, 2018, 8 (14) :7847-7854
[2]   The In-Gap Electronic State Spectrum of Methylammonium Lead Iodide Single-Crystal Perovskites [J].
Adinolfi, Valerio ;
Yuan, Mingjian ;
Comin, Riccardo ;
Thibau, Emmanuel S. ;
Shi, Dong ;
Saidaminov, Makhsud I. ;
Kanjanaboos, Pongsakorn ;
Kopilovic, Damir ;
Hoogland, Sjoerd ;
Lu, Zheng-Hong ;
Bakr, Osman M. ;
Sargent, Edward H. .
ADVANCED MATERIALS, 2016, 28 (17) :3406-3410
[3]   Graphene-Perovskite Solar Cells Exceed 18% Efficiency: A Stability Study [J].
Agresti, Antonio ;
Pescetelli, Sara ;
Taheri, Babak ;
Castillo, Antonio Esau Del Rio ;
Cina, Lucio ;
Bonaccorso, Francesco ;
Di Carlo, Aldo .
CHEMSUSCHEM, 2016, 9 (18) :2609-2619
[4]   Efficiency and Stability Enhancement in Perovskite Solar Cells by Inserting Lithium-Neutralized Graphene Oxide as Electron Transporting Layer [J].
Agresti, Antonio ;
Pescetelli, Sara ;
Cina, Lucio ;
Konios, Dimitrios ;
Kakavelakis, George ;
Kymakis, Emmanuel ;
Di Carlo, Aldo .
ADVANCED FUNCTIONAL MATERIALS, 2016, 26 (16) :2686-2694
[5]   Trapped charge-driven degradation of perovskite solar cells [J].
Ahn, Namyoung ;
Kwak, Kwisung ;
Jang, Min Seok ;
Yoon, Heetae ;
Lee, Byung Yang ;
Lee, Jong-Kwon ;
Pikhitsa, Peter V. ;
Byun, Junseop ;
Choi, Mansoo .
NATURE COMMUNICATIONS, 2016, 7
[6]   Triazine-Substituted Zinc Porphyrin as an Electron Transport Interfacial Material for Efficiency Enhancement and Degradation Retardation in Planar Perovskite Solar Cells [J].
Balis, Nikolaos ;
Verykios, Apostolis ;
Soultati, Anastasia ;
Constantoudis, Vassilios ;
Papadakis, Michael ;
Kournoutas, Fotis ;
Drivas, Charalampos ;
Skoulikidou, Maria-Christina ;
Gardelis, Spyros ;
Fakis, Mihalis ;
Kennou, Stella ;
Kontos, Athanassios G. ;
Coutsolelos, Athanassios G. ;
Falaras, Polycarpos ;
Vasilopoulou, Maria .
ACS APPLIED ENERGY MATERIALS, 2018, 1 (07) :3216-3229
[7]   Dye Sensitization of Titania Compact Layer for Efficient and Stable Perovskite Solar Cells [J].
Balis, Nikolaos ;
Zaky, Alaa A. ;
Perganti, Dorothea ;
Kaltzoglou, Andreas ;
Sygellou, Lamprini ;
Katsaros, Fotios ;
Stergiopoulos, Thomas ;
Kontos, Athanassios G. ;
Falaras, Polycarpos .
ACS APPLIED ENERGY MATERIALS, 2018, 1 (11) :6161-6171
[8]   Understanding the formation and evolution of interdiffusion grown organolead halide perovskite thin films by thermal annealing [J].
Bi, Cheng ;
Shao, Yuchuan ;
Yuan, Yongbo ;
Xiao, Zhengguo ;
Wang, Chenggong ;
Gao, Yongli ;
Huang, Jinsong .
JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (43) :18508-18514
[9]   Graphene-Based Electron Transport Layers in Perovskite Solar Cells: A Step-Up for an Efficient Carrier Collection [J].
Biccari, Francesco ;
Gabelloni, Fabio ;
Burzi, Erica ;
Gurioli, Massimo ;
Pescetelli, Sara ;
Agresti, Antonio ;
Castillo, Antonio Esau Del Rio ;
Ansaldo, Alberto ;
Kymakis, Emmanuel ;
Bonaccorso, Francesco ;
Di Carlo, Aldo ;
Vinattieri, Anna .
ADVANCED ENERGY MATERIALS, 2017, 7 (22)
[10]   Light and oxygen induced degradation limits the operational stability of methylammonium lead triiodide perovskite solar cells [J].
Bryant, Daniel ;
Aristidou, Nicholas ;
Pont, Sebastian ;
Sanchez-Molina, Irene ;
Chotchunangatchaval, Thana ;
Wheeler, Scot ;
Durrant, James R. ;
Haque, Saif A. .
ENERGY & ENVIRONMENTAL SCIENCE, 2016, 9 (05) :1655-1660