Synthesis and magnetic properties of nanostructured metallic Co, Mn and Ni oxide materials obtained from solid-state metal-macromolecular complex precursors

被引:23
作者
Diaz, C. [1 ]
Valenzuela, M. L. [2 ]
Laguna-Bercero, M. A. [3 ]
Orera, A. [3 ]
Bobadilla, D. [1 ]
Abarca, S. [1 ]
Pena, O. [4 ]
机构
[1] Univ Chile, Fac Quim, Dept Quim, Las Palmeras 3425,Casilla 653, Nunoa, Santiago De Chi, Chile
[2] Univ Autonoma Chile, Inst Ciencias Quim Aplicadas, Inorgan Chem & Mol Mat Ctr, Ave El Llano Subercaseaux 2801, San Miguel, Santiago De Chi, Chile
[3] Univ Zaragoza, CSIC, ICMA, C Pedro Cerbuna 12, E-50009 Zaragoza, Spain
[4] Univ Rennes 1, CNRS, UMR 6226, Sci Chim Rennes, F-35042 Rennes, France
关键词
GOLD NANOPARTICLES; CRYSTAL-STRUCTURE; CHITOSAN; CO3O4; DECOMPOSITION; NANOCRYSTALS; SIZE; SUPRACRYSTALS; SUPERLATTICES; NANOMATERIALS;
D O I
10.1039/c7ra00782e
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The simple reaction of chitosan with metallic salts yields (chitosan) (MLn)(x), MLn = MnCl2, CoCl2, NiCl2, macromolecular complexes which, after a thermal treatment at 800 degrees C under air, give nanostructured Mn2O3, Co3O4 and NiO. The polymer acts as a template in the solid state, which is eliminated after the combustion process. At an intermediate stage, a layered graphitic carbon matrix was observed by HRTEM over the grown metal oxides. A mechanism for the growth of nanostructured oxides is discussed, including Raman studies. The nanostructured Mn2O3, Co3O4 and NiO particles grow over graphite layers and the solid-state role of chitosan is crucial for the formation of this graphite substrate. An antiferromagnetic transition was observed in Co3O4 nanoparticles, with T-N = 38 K, whereas NiO nanoparticles behave as a superparamagnetic material with a blocking temperature above 300 K.
引用
收藏
页码:27729 / 27736
页数:8
相关论文
共 69 条
  • [1] Adewuyi S., 2007, J BIOL MACROMOL, V48, P301
  • [2] Synthesis of chitosan-stabilized platinum and palladium nanoparticles and their hydrogenation activity
    Adlim, M
    Abu Bakar, M
    Liew, KY
    Ismail, J
    [J]. JOURNAL OF MOLECULAR CATALYSIS A-CHEMICAL, 2004, 212 (1-2) : 141 - 149
  • [3] Aranaz I., 2009, CURRENT CHEM BIOL, V3, P203, DOI 10.2174/2212796810903020203
  • [4] An infrared investigation in relation with chitin and chitosan characterization
    Brugnerotto, J
    Lizardi, J
    Goycoolea, FM
    Argüelles-Monal, W
    Desbrières, J
    Rinaudo, M
    [J]. POLYMER, 2001, 42 (08) : 3569 - 3580
  • [5] Resonant Raman Study on Bulk and Isolated Graphitic Nanoribbons
    Campos-Delgado, J.
    Farhat, H.
    Kim, Y. A.
    Reina, A.
    Kong, J.
    Endo, M.
    Muramatsu, H.
    Hayashi, T.
    Terrones, H.
    Terrones, M.
    Dresselhaus, M. S.
    [J]. SMALL, 2009, 5 (23) : 2698 - 2702
  • [6] Microscale Mn2O3 Hollow Structures: Sphere, Cube, Ellipsoid, Dumbbell, and Their Phenol Adsorption Properties
    Cao, Jie
    Zhu, Yongchun
    Bao, Keyan
    Shi, Liang
    Liu, Shuzhen
    Qian, Yitai
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2009, 113 (41) : 17755 - 17760
  • [7] Preparation and adsorption properties of monodisperse chitosan-bound Fe3O4 magnetic nanoparticles for removal of Cu(II) ions
    Chang, YC
    Chen, DH
    [J]. JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2005, 283 (02) : 446 - 451
  • [8] Polymer-mediated synthesis of highly dispersed Pt nanoparticles on carbon black
    Chen, M
    Xing, YC
    [J]. LANGMUIR, 2005, 21 (20) : 9334 - 9338
  • [9] Application of chitosan, a natural aminopolysaccharide, for dye removal from aqueous solutions by adsorption processes using batch studies: A review of recent literature
    Crini, Gregorio
    Badot, Pierre-Marie
    [J]. PROGRESS IN POLYMER SCIENCE, 2008, 33 (04) : 399 - 447
  • [10] Nanostructured copper oxides and phosphates from a new solid-state route
    Diaz, C.
    Valenzuela, M. L.
    Lavayen, V.
    Mendoza, K.
    Pena, D. O.
    O'Dwyer, C.
    [J]. INORGANICA CHIMICA ACTA, 2011, 377 (01) : 5 - 13