Stochastic approximations of perturbed Fredholm Volterra integro-differential equation arising in mathematical neurosciences

被引:6
作者
Rahman, M.
Jackiewicz, Z.
Welfert, B. D.
机构
[1] Univ N Florida, Dept Math & Stat, Jacksonville, FL 32224 USA
[2] Arizona State Univ, Dept Math & Stat, Tempe, AZ 85287 USA
关键词
Fredholm Volterra integro-differential equation; Euler-Hermite method; stochastic approximation; error; neural network;
D O I
10.1016/j.amc.2006.07.137
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper extends the results of synaptically generated wave propagation through a network of connected excitatory neurons to a continuous model, defined by a Fredholm Volterra integro-differential equation (FVIDE), which includes memory effects of the past in the propagation. Stochastic approximation and numerical simulations are discussed. (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:1173 / 1182
页数:10
相关论文
共 11 条
[1]  
Davis P, 1984, Methods of Numerical Integration, VSecond
[2]  
GIKHMANN II, 1973, AMS TRANSL, V12
[3]   An algorithmic introduction to numerical simulation of stochastic differential equations [J].
Higham, DJ .
SIAM REVIEW, 2001, 43 (03) :525-546
[4]  
HOPPENSTEADT FC, UNPUB ADV APPL PROB
[5]  
HOPPENSTEADT FC, 1997, INTRO MATH NEURONS
[6]  
HOPPENSTEADT FC, 2003, UNPUB NETWORKS
[7]   Numerical solution of a Fredholm integro-differential equation modelling neural networks [J].
Jackiewicz, Z ;
Rahman, A ;
Welfert, BD .
APPLIED NUMERICAL MATHEMATICS, 2006, 56 (3-4) :423-432
[8]  
KAHSMINSKI RZ, 1966, THEO PROB APPL, V11, P442
[9]  
Karlin S., 1966, 1 COURSE STOCHASTIC
[10]  
Oksendal B., 1989, STOCHASTIC DIFFERENT