Optimized Piezoelectric Energy Harvesters for Performance Robust Operation in Periodic Vibration Environments

被引:1
作者
Cai, Wen [1 ]
Harne, Ryan L. [1 ]
机构
[1] Ohio State Univ, Dept Mech & Aerosp Engn, Columbus, OH 43210 USA
来源
ACTIVE AND PASSIVE SMART STRUCTURES AND INTEGRATED SYSTEMS XIII | 2019年 / 10967卷
基金
美国国家科学基金会;
关键词
DEVICES; DESIGN; BEAM;
D O I
10.1117/12.2514041
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Energy harvesters with wide frequency range, long lifetime, and high output power are preferred to serve as power supplies for wireless devices. Motivated to guide the design of a robust energy harvesting platform, an analytical model based on the Euler-Bernoulli beam theory for a laminated beam is first presented to predict the nonlinear response of the system when subjected to harmonic base acceleration and tunable magnetic forces. Following experimental validation, a multi-objective optimization based on a genetic algorithm considers how to improve the frequency range of high performance, decrease peak strain level, and maximize output power by manipulating the design of the nonlinear energy harvester. The optimization results indicate that a slightly monostable configuration is superior when taking all three aspects into consideration.
引用
收藏
页数:10
相关论文
共 25 条
[1]   Multimodal piezoelectric devices optimization for energy harvesting [J].
Acciani, Giuseppe ;
Dimucci, Antonietta ;
Lorusso, Leonardo .
INTERNATIONAL JOURNAL OF MULTIPHYSICS, 2013, 7 (03) :227-243
[2]   Long-term fatigue behavior of a cantilever piezoelectric energy harvester [J].
Avvari, Panduranga Vittal ;
Yang, Yaowen ;
Soh, Chee Kiong .
JOURNAL OF INTELLIGENT MATERIAL SYSTEMS AND STRUCTURES, 2017, 28 (09) :1188-1210
[3]  
Baker J., 2005, P 3 INT EN CONV ENG
[4]   Vibration energy scavenging via piezoelectric bimorphs of optimized shapes [J].
Benasciutti, Denis ;
Moro, Luciano ;
Zelenika, Sasa ;
Brusa, Eugenio .
MICROSYSTEM TECHNOLOGIES-MICRO-AND NANOSYSTEMS-INFORMATION STORAGE AND PROCESSING SYSTEMS, 2010, 16 (05) :657-668
[5]   Beam Shape Optimization for Power Harvesting [J].
Dietl, John M. ;
Garcia, Ephrahim .
JOURNAL OF INTELLIGENT MATERIAL SYSTEMS AND STRUCTURES, 2010, 21 (06) :633-646
[6]   A piezomagnetoelastic structure for broadband vibration energy harvesting [J].
Erturk, A. ;
Hoffmann, J. ;
Inman, D. J. .
APPLIED PHYSICS LETTERS, 2009, 94 (25)
[7]   An experimentally validated bimorph cantilever model for piezoelectric energy harvesting from base excitations [J].
Erturk, A. ;
Inman, D. J. .
SMART MATERIALS AND STRUCTURES, 2009, 18 (02)
[8]   Improved energy harvesting from wideband vibrations by nonlinear piezoelectric converters [J].
Ferrari, M. ;
Ferrari, V. ;
Guizzetti, M. ;
Ando, B. ;
Baglio, S. ;
Trigona, C. .
SENSORS AND ACTUATORS A-PHYSICAL, 2010, 162 (02) :425-431
[9]   Characterization of different beam shapes for piezoelectric energy harvesting [J].
Goldschmidtboeing, Frank ;
Woias, Peter .
JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2008, 18 (10)
[10]   Movers and Shakers: Kinetic Energy Harvesting for the Internet of Things [J].
Gorlatova, Maria ;
Sarik, John ;
Grebla, Guy ;
Cong, Mina ;
Kymissis, Ioannis ;
Zussman, Gil .
IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2015, 33 (08) :1624-1639