The performance of a numerical scheme on the variable-order time-fractional advection-reaction-subdiffusion equations

被引:14
作者
Kheirkhah, Farnaz [1 ]
Hajipour, Mojtaba [1 ]
Baleanu, Dumitru [2 ,3 ]
机构
[1] Sahand Univ Technol, Dept Math, Box 51335-1996, Tabriz, Iran
[2] Cankaya Univ, Fac Arts & Sci, Dept Math, TR-06530 Ankara, Turkey
[3] Inst Space Sci, MG-23, R76900, Bucharest, Romania
关键词
Variable-order time-fractional derivative; Grunwald formula; Compact finite difference; Reaction-subdiffusion problem; DISCONTINUOUS GALERKIN METHOD; FINITE-DIFFERENCE SCHEME; SUB-DIFFUSION; DIFFERENTIATION; APPROXIMATION; OPERATORS;
D O I
10.1016/j.apnum.2022.03.016
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with a highly accurate numerical scheme for a class of one and two-dimensional time-fractional advection-reaction-subdiffusion equations of variable order alpha(x, t) is an element of (0, 1). For the spatial and temporal discretization of the equation, a fourth order compact finite difference operator and a third-order weighted-shifted Grunwald formula are applied, respectively. The stability and convergence of the present scheme are addressed. Some extensive numerical experiments are performed to confirm the theoretical analysis and high-accuracy of this novel scheme. Comparisons are also made with the available schemes in the literature. (c) 2022 IMACS. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:25 / 40
页数:16
相关论文
共 44 条
  • [1] Local discontinuous Galerkin method for time variable order fractional differential equations with sub-diffusion and super-diffusion
    Ahmadinia, M.
    Safari, Z.
    Abbasi, M.
    [J]. APPLIED NUMERICAL MATHEMATICS, 2020, 157 : 602 - 618
  • [2] [Anonymous], 2007, ADV FRACTIONAL CALCU
  • [3] Baleanu D, 2011, FRACTIONAL DYNAMICS
  • [4] Baleanu D., 2012, FRACTIONAL CALCULUS, DOI [10.1142/8180, DOI 10.1142/8180]
  • [5] Numerical solution of time fractional diffusion systems
    Burrage, Kevin
    Cardone, Angelamaria
    D'Ambrosio, Raffaele
    Paternoster, Beatrice
    [J]. APPLIED NUMERICAL MATHEMATICS, 2017, 116 : 82 - 94
  • [6] A compact finite difference scheme for variable order subdiffusion equation
    Cao, Jianxiong
    Qiu, Yanan
    Song, Guojie
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2017, 48 : 140 - 149
  • [7] Numerical approximation for a variable-order nonlinear reaction-subdiffusion equation
    Chen, Chang-Ming
    Liu, F.
    Turner, I.
    Anh, V.
    Chen, Y.
    [J]. NUMERICAL ALGORITHMS, 2013, 63 (02) : 265 - 290
  • [8] Numerical simulation for the variable-order Galilei invariant advection diffusion equation with a nonlinear source term
    Chen, Chang-Ming
    Liu, F.
    Anh, V.
    Turner, I.
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2011, 217 (12) : 5729 - 5742
  • [9] NUMERICAL SCHEMES WITH HIGH SPATIAL ACCURACY FOR A VARIABLE-ORDER ANOMALOUS SUBDIFFUSION EQUATION
    Chen, Chang-Ming
    Liu, F.
    Anh, V.
    Turner, I.
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2010, 32 (04) : 1740 - 1760
  • [10] Mechanics with variable-order differential operators
    Coimbra, CFM
    [J]. ANNALEN DER PHYSIK, 2003, 12 (11-12) : 692 - 703