On cubic s-arc transitive Cayley graphs of finite simple groups

被引:61
作者
Xu, SJ [1 ]
Fang, XG
Wang, J
Xu, MY
机构
[1] Peking Univ, LMAM, Beijing 100871, Peoples R China
[2] Peking Univ, Sch Math Sci, Beijing 100871, Peoples R China
基金
中国国家自然科学基金;
关键词
simple group; Cayley graph; normal Cayley graph; arc transitive graph;
D O I
10.1016/j.ejc.2003.10.015
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a positive integer s, a graph Gamma is called s-arc transitive if its full automorphism group AutGamma acts transitively on the set of s-arcs of Gamma. Given a group G and a subset S of G with S = S-1 and 1 is not an element of S, let Gamma = Cay(G, S) be the Cayley graph of G with respect to S and G(R) the set of right translations of G on G. Then GR forms a regular subgroup of AutGamma. A Cayley graph Gamma = Cay(G, S) is called normal if G(R) is normal in AutGamma. In this paper we investigate connected cubic s-arc transitive Cayley graphs Gamma of finite non-Abelian simple groups. Based on Li's work (Ph.D. Thesis (1996)), we prove that either Gamma is normal with s less than or equal to 2 or G = A(47) with s = 5 and AutGamma congruent to A(48). Further, a connected 5-arc transitive cubic Cayley graph of A47 is constructed. (C) 2004 Elsevier Ltd. All rights reserved.
引用
收藏
页码:133 / 143
页数:11
相关论文
共 21 条
  • [1] Biggs N., 1993, ALGEBRAIC GRAPH THEO
  • [2] The infinitude of 7-arc-transitive graphs
    Conder, MDE
    Walker, CG
    [J]. JOURNAL OF ALGEBRA, 1998, 208 (02) : 619 - 629
  • [3] Dixon JD., 1996, PERMUTATION GROUPS
  • [4] On the automorphism groups of Cayley graphs of finite simple groups
    Fang, XG
    Praeger, CE
    Wang, J
    [J]. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2002, 66 : 563 - 578
  • [5] On cubic Cayley graphs of finite simple groups
    Fang, XG
    Li, CH
    Wang, J
    Xu, MY
    [J]. DISCRETE MATHEMATICS, 2002, 244 (1-3) : 67 - 75
  • [6] Finite two-arc transitive graphs admitting a Suzuki simple group
    Fang, XG
    Praeger, CE
    [J]. COMMUNICATIONS IN ALGEBRA, 1999, 27 (08) : 3727 - 3754
  • [7] DOUBLY PRIMITIVE VERTEX STABILIZERS IN GRAPHS
    GARDINER, A
    [J]. MATHEMATISCHE ZEITSCHRIFT, 1974, 135 (03) : 257 - 266
  • [8] ON THE FULL AUTOMORPHISM GROUP OF A GRAPH
    GODSIL, CD
    [J]. COMBINATORICA, 1981, 1 (03) : 243 - 256
  • [9] ON FINITE AFFINE 2-ARC TRANSITIVE GRAPHS
    IVANOV, AA
    PRAEGER, CE
    [J]. EUROPEAN JOURNAL OF COMBINATORICS, 1993, 14 (05) : 421 - 444
  • [10] Li C.H., 1996, Isomorphisms of finite Cayley graphs