Novel Application of Machine Learning Techniques for Rapid SourceApportionment of Aerosol Mass Spectrometer Datasets

被引:7
作者
Pande, Paritosh [1 ]
Shrivastava, Manish [1 ]
Shilling, John E. [1 ]
Zelenyuk, Alla [1 ]
Zhang, Qi [2 ]
Chen, Qi [3 ,4 ]
Ng, Nga Lee [5 ,6 ,7 ]
Zhang, Yue [8 ]
Takeuchi, Masayuki [5 ]
Nah, Theodora [9 ]
Rasool, Quazi Z. [1 ]
Zhang, Yuwei [1 ]
Zhao, Bin [1 ]
Liu, Ying [1 ]
机构
[1] Pacific Northwest Natl Lab, Richland, WA 99352 USA
[2] Univ Calif Davis, Dept Environm Toxicol, Davis, CA 95616 USA
[3] Peking Univ, Coll Environm Sci & Engn, State Key Joint Lab Environm Simulat & Pollut Con, BIC ESAT, Beijing 100871, Peoples R China
[4] Peking Univ, Coll Environm Sci & Engn, IJRC, Beijing 100871, Peoples R China
[5] Georgia Inst Technol, Sch Civil & Environm Engn, Atlanta, GA 30332 USA
[6] Georgia Inst Technol, Sch Chem & Biomol Engn, Atlanta, GA 30332 USA
[7] Georgia Inst Technol, Sch Earth & Atmospher Sci, Atlanta, GA 30332 USA
[8] Texas A&M Univ, Dept Atmospher Sci, College Stn, TX 77843 USA
[9] City Univ Hong Kong, Sch Energy & Environm, Kowloon, Hong Kong, Peoples R China
来源
ACS EARTH AND SPACE CHEMISTRY | 2022年 / 6卷 / 04期
基金
美国国家科学基金会;
关键词
aerosol mass spectrometer; SOA; machine learning; logistic regression; classification; ensemble regression; source apportionment; SECONDARY ORGANIC AEROSOL; ALPHA-PINENE; ISOPRENE; CHEMISTRY; EMISSIONS; SOA;
D O I
10.1021/acsearthspacechem.1c00344
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We apply machine learning approaches sparse multinomial logistic regression to classify aerosol mass spectrometer(AMS) unit mass resolution (UMR) data followed by an ensemble regression technique for source apportionment of organicaerosols (OA). The classifier was trained on 60 well characterized laboratory and positive matrix factorization (PMF) deconvolvedreference spectra to identify eight OA types. These include four laboratory-derived secondary organic aerosol (SOA) spectra, whichinclude isoprene photooxidation SOA, isoprene epoxydiols (IEPOX) SOA, a monoterpene SOA type that includes alpha-pinene and beta-pinene SOA, and aromatic SOA from oxidation of naphthalene andm-xylene precursors, as well as PMF deconvolved spectra forthree primary organic aerosol (POA) types, namely, hydrocarbon-like organic aerosol (HOA), biomass burning organic aerosol(BBOA), and cooking OA (COA), and a more oxidized oxygenated OA type (MO-OOA). A 5-fold cross-validation strategy,repeated 10 times, was used to assess the classifier's performance. The classifier had high classification accuracy for COA, aromaticSOA, and isoprene SOA spectra but incorrectly classified similar to 9% by number of MO-OOA spectra as BBOA, 12% of BBOA spectra asHOA (and vice versa), and 18% of IEPOX-SOA spectra as aromatic SOA. Next, an ensemble regression model was trained on anartificially generated dataset consisting of mixtures of different OA types to assess its ability to predict fractional mass abundancesfrom classification probabilities of various OA species obtained from the multinomial logistic regression classifier trained on thereference spectra. Ultimately, the proposed approach was applied for source apportionment of aircraft-based AMS measurements ofOA UMR spectra during the HI-SCALEfield campaign. On two representative days (May 6th and 18th, 2016), the algorithmdetermined that similar to 50-60% of OA by mass was MO-OOA, which represented a highly aged organic aerosol mixture from differentsources. On both days, BBOA was determined to contribute less than 10% to OA by mass. However, on May 18th, the aromaticSOA fraction was higher compared to that on May 6th. The proposed approach is capable of rapidly analyzing AMS data in realtime, making it suitable for applications where rapid source apportionment of AMS OA spectra is desirable.
引用
收藏
页码:932 / 942
页数:11
相关论文
共 41 条
[1]  
Alfarra M. R., 2004, ATMOS ENVIRON
[2]   Secondary organic aerosol formation from the β-pinene+NO3 system: effect of humidity and peroxy radical fate [J].
Boyd, C. M. ;
Sanchez, J. ;
Xu, L. ;
Eugene, A. J. ;
Nah, T. ;
Tuet, W. Y. ;
Guzman, M. I. ;
Ng, N. L. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2015, 15 (13) :7497-7522
[3]   SUBMODEL SELECTION AND EVALUATION IN REGRESSION - THE X-RANDOM CASE [J].
BREIMAN, L ;
SPECTOR, P .
INTERNATIONAL STATISTICAL REVIEW, 1992, 60 (03) :291-319
[4]   Examining the effects of anthropogenic emissions on isoprene-derived secondary organic aerosol formation during the 2013 Southern Oxidant and Aerosol Study (SOAS) at the Look Rock, Tennessee ground site [J].
Budisulistiorini, S. H. ;
Li, X. ;
Bairai, S. T. ;
Renfro, J. ;
Liu, Y. ;
Liu, Y. J. ;
McKinney, K. A. ;
Martin, S. T. ;
McNeill, V. F. ;
Pye, H. O. T. ;
Nenes, A. ;
Neff, M. E. ;
Stone, E. A. ;
Mueller, S. ;
Knote, C. ;
Shaw, S. L. ;
Zhang, Z. ;
Gold, A. ;
Surratt, J. D. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2015, 15 (15) :8871-8888
[5]   Chemical and microphysical characterization of ambient aerosols with the aerodyne aerosol mass spectrometer [J].
Canagaratna, M. R. ;
Jayne, J. T. ;
Jimenez, J. L. ;
Allan, J. D. ;
Alfarra, M. R. ;
Zhang, Q. ;
Onasch, T. B. ;
Drewnick, F. ;
Coe, H. ;
Middlebrook, A. ;
Delia, A. ;
Williams, L. R. ;
Trimborn, A. M. ;
Northway, M. J. ;
DeCarlo, P. F. ;
Kolb, C. E. ;
Davidovits, P. ;
Worsnop, D. R. .
MASS SPECTROMETRY REVIEWS, 2007, 26 (02) :185-222
[6]   Aging of biomass burning aerosols over West Africa: Aircraft measurements of chemical composition, microphysical properties, and emission ratios [J].
Capes, G. ;
Johnson, B. ;
McFiggans, G. ;
Williams, P. I. ;
Haywood, J. ;
Coe, H. .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2008, 113 (D20)
[7]   Submicron particle mass concentrations and sources in the Amazonian wet season (AMAZE-08) [J].
Chen, Q. ;
Farmer, D. K. ;
Rizzo, L. V. ;
Pauliquevis, T. ;
Kuwata, M. ;
Karl, T. G. ;
Guenther, A. ;
Allan, J. D. ;
Coe, H. ;
Andreae, M. O. ;
Poeschl, U. ;
Jimenez, J. L. ;
Artaxo, P. ;
Martin, S. T. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2015, 15 (07) :3687-3701
[8]   Particle-Phase Chemistry of Secondary Organic Material: Modeled Compared to Measured O:C and H:C Elemental Ratios Provide Constraints [J].
Chen, Qi ;
Liu, Yingjun ;
Donahue, Neil M. ;
Shilling, John E. ;
Martin, Scot T. .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2011, 45 (11) :4763-4770
[9]   A machine learning approach to aerosol classification for single-particle mass spectrometry [J].
Christopoulos, Costa D. ;
Garimella, Sarvesh ;
Zawadowicz, Maria A. ;
Moehler, Ottmar ;
Cziczo, Daniel J. .
ATMOSPHERIC MEASUREMENT TECHNIQUES, 2018, 11 (10) :5687-5699
[10]   Effects of aging on organic aerosol from open biomass burning smoke in aircraft and laboratory studies [J].
Cubison, M. J. ;
Ortega, A. M. ;
Hayes, P. L. ;
Farmer, D. K. ;
Day, D. ;
Lechner, M. J. ;
Brune, W. H. ;
Apel, E. ;
Diskin, G. S. ;
Fisher, J. A. ;
Fuelberg, H. E. ;
Hecobian, A. ;
Knapp, D. J. ;
Mikoviny, T. ;
Riemer, D. ;
Sachse, G. W. ;
Sessions, W. ;
Weber, R. J. ;
Weinheimer, A. J. ;
Wisthaler, A. ;
Jimenez, J. L. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2011, 11 (23) :12049-12064