Yield stress determines bioprintability of hydrogels based on gelatin-methacryloyl and gellan gum for cartilage bioprinting

被引:269
作者
Mouser, Vivian H. M. [1 ]
Melchels, Ferry P. W. [1 ,2 ]
Visser, Jetze [1 ]
Dhert, Wouter J. A. [3 ]
Gawlitta, Debby [4 ]
Malda, Jos [1 ,5 ]
机构
[1] Univ Med Ctr Utrecht, Dept Orthopaed, POB 85500, NL-3508 GA Utrecht, Netherlands
[2] Heriot Watt Univ, Inst Biol Chem Biophys & Bioengn, Sch Engn & Phys Sci, Edinburgh, Midlothian, Scotland
[3] Fac Vet Med Utrecht, Utrecht, Netherlands
[4] Univ Med Ctr Utrecht, Dept Oral & Maxillofacial Surg & Special Dent Car, Utrecht, Netherlands
[5] Fac Vet Med Utrecht, Dept Equine Sci, Utrecht, Netherlands
基金
欧洲研究理事会;
关键词
bioprinting; gelatin-methacryloyl; gellan gum; yield stress; cartilage regeneration; TISSUE-ENGINEERED CONSTRUCTS; ARTICULAR-CARTILAGE; EXTRACELLULAR-MATRIX; BIOMEDICAL APPLICATIONS; HYALURONIC-ACID; 3D; CELLS; FABRICATION; DENSITY; BIOMATERIALS;
D O I
10.1088/1758-5090/8/3/035003
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Bioprinting of chondrocyte-laden hydrogels facilitates the fabrication of constructs with controlled organization and shape e.g. for articular cartilage implants. Gelatin-methacryloyl (gelMA) supplemented with gellan gum is a promising bio-ink. However, the rheological properties governing the printing process, and the influence of gellan gum on the mechanical properties and chondrogenesis of the blend, are still unknown. Here, we investigated the suitability of gelMA/gellan for cartilage bioprinting. Multiple concentrations, ranging from 3% to 20% gelMA with 0%-1.5% gellan gum, were evaluated for their printability, defined as the ability to form filaments and to incorporate cells at 15 degrees C-37 degrees C. To support the printability assessment, yield stress and viscosity of the hydrogels were measured. Stiffness of UV-cured constructs, as well as cartilage-like tissue formation by embedded chondrocytes, were determined in vitro. A large range of gelMA/gellan concentrations were printable with inclusion of cells and formed the bioprinting window. The addition of gellan gum improved filament deposition by inducing yielding behavior, increased construct stiffness and supported chondrogenesis. High gellan gum concentrations, however, did compromise cartilage matrix production and distribution, and even higher concentrations resulted in too high yield stresses to allow cell encapsulation. This study demonstrates the high potential of gelMA/gellan blends for cartilage bioprinting and identifies yield stress as a dominant factor for bioprintability.
引用
收藏
页数:13
相关论文
共 62 条
[1]   Design characteristics for the tissue engineering of cartilaginous tissues [J].
Almarza, AJ ;
Athanasiou, KA .
ANNALS OF BIOMEDICAL ENGINEERING, 2004, 32 (01) :2-17
[2]   COMPARATIVE-STUDY OF THE INTRINSIC MECHANICAL-PROPERTIES OF THE HUMAN ACETABULAR AND FEMORAL-HEAD CARTILAGE [J].
ATHANASIOU, KA ;
AGARWAL, A ;
DZIDA, FJ .
JOURNAL OF ORTHOPAEDIC RESEARCH, 1994, 12 (03) :340-349
[3]   The 3D printing of gelatin methacrylamide cell-laden tissue-engineered constructs with high cell viability [J].
Billiet, Thomas ;
Gevaert, Elien ;
De Schryver, Thomas ;
Cornelissen, Maria ;
Dubruel, Peter .
BIOMATERIALS, 2014, 35 (01) :49-62
[4]   Hydrogel properties influence ECM production by chondrocytes photoencapsulated in poly(ethylene glycol) hydrogels [J].
Bryant, SJ ;
Anseth, KS .
JOURNAL OF BIOMEDICAL MATERIALS RESEARCH, 2002, 59 (01) :63-72
[5]   A Printable Photopolymerizable Thermosensitive p(HPMAm-lactate)-PEG Hydrogel for Tissue Engineering [J].
Censi, Roberta ;
Schuurman, Wouter ;
Malda, Jos ;
di Dato, Giorgio ;
Burgisser, Petra E. ;
Dhert, Wouter J. A. ;
van Nostrum, Cornelus F. ;
di Martino, Piera ;
Vermonden, Tina ;
Hennink, Wim E. .
ADVANCED FUNCTIONAL MATERIALS, 2011, 21 (10) :1833-1842
[6]   Depth- and strain-dependent mechanical and electromechanical properties of full-thickness bovine articular cartilage in confined compression [J].
Chen, AC ;
Bae, WC ;
Schinagl, RM ;
Sah, RL .
JOURNAL OF BIOMECHANICS, 2001, 34 (01) :1-12
[7]   Surface modification of electrospun PLLA nanofibers by plasma treatment and cationized gelatin immobilization for cartilage tissue engineering [J].
Chen, Jyh-Ping ;
Su, Chien-Hao .
ACTA BIOMATERIALIA, 2011, 7 (01) :234-243
[8]   Direct freeform fabrication of seeded hydrogels in arbitrary geometries [J].
Cohen, Daniel L. ;
Malone, Evan ;
Lipson, Hod ;
Bonassar, Lawrence J. .
TISSUE ENGINEERING, 2006, 12 (05) :1325-1335
[9]   Natural polymers for gene delivery and tissue engineering [J].
Dang, Jiyoung M. ;
Leong, Kam W. .
ADVANCED DRUG DELIVERY REVIEWS, 2006, 58 (04) :487-499
[10]   Tissue cells feel and respond to the stiffness of their substrate [J].
Discher, DE ;
Janmey, P ;
Wang, YL .
SCIENCE, 2005, 310 (5751) :1139-1143