Regulating the polysulfide redox conversion by iron phosphide nanocrystals for high-rate and ultrastable lithium-sulfur battery

被引:277
作者
Huang, Shaozhuan [1 ]
Lim, Yew Von [1 ]
Zhang, Xiaoming [1 ]
Wang, Ye [1 ,2 ,3 ]
Zheng, Yun [4 ]
Kong, Dezhi [1 ]
Ding, Meng [1 ]
Yang, Shengyuan A. [1 ]
Yang, Hui Ying [1 ]
机构
[1] Singapore Univ Technol & Design, Pillar Engn Prod Dev, 8 Somapah Rd, Singapore 487372, Singapore
[2] Zhengzhou Univ, Dept Phys & Engn, Zhengzhou 450052, Peoples R China
[3] Zhengzhou Univ, Key Lab Mat Phys, Zhengzhou 450052, Peoples R China
[4] ASTAR, Inst Mat Res & Engn, 2 Fusionopolis Way, Singapore 138634, Singapore
基金
新加坡国家研究基金会; 中国国家自然科学基金;
关键词
Iron phosphide nanocrystals; Density functional theory calculations; In situ Raman & XRD; Chemical bonding; Catalytic activity; Lithium-sulfur battery; SITU RAMAN-SPECTROSCOPY; X-RAY-DIFFRACTION; IN-SITU; PERFORMANCE; CARBON; MECHANISM; CATHODES; NANOSHEETS; SEPARATOR; CHEMISTRY;
D O I
10.1016/j.nanoen.2018.06.052
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Lithium sulfur (Li-S) batteries have attracted considerable attention as the next generation rechargeable batteries owing to their much higher energy density in contrast to the conventional lithium ion batteries (LIBs). However, the inferior cycling performance as well as rate capability, resulted from the polysulfides shuttle effect and sluggish reaction kinetics, remains as major hurdles for its practical application. Herein, a high-rate and ultrastable Li-S battery has been demonstrated by using the multifunctional iron phosphide (FeP) nanocrystals as an efficient host material to anchor the polysulfides and regulate the polysulfide redox conversion. Density functional theory (DFT) calculations indicate that FeP can provide strong chemical bonding towards polysulfides. The FeP nanocrystals show high catalytic effect to facilitate the polysulfides conversion reaction and lower the Li2S nucleation energy. Additionally, the 3D rGO-CNTs scaffold enables fast and continuous long-distance electron transportation and accommodates large volumetric change during the charge/discharge processes. As a result, the FeP nanocrystals with intrinsic polysulfide affinity and catalytic activity suppress the polysulfide dissolution and enhance the redox reaction kinetics, enabling ultrastable cycling (0.04% capacity decay per cycle) and excellent rate performance (613.1 mAh g(-1) at 3 C). Significantly, the enhanced Li-S performances provide significant insight for realizing high performance Li-S batteries by incorporating the metal phosphides into the sulfur cathode.
引用
收藏
页码:340 / 348
页数:9
相关论文
共 56 条
[1]   Transition Metal Dichalcogenide Atomic Layers for Lithium Polysulfides Electrocatalysis [J].
Babu, Ganguli ;
Masurkar, Nirul ;
Al Salem, Hesham ;
Arave, Leela Mohana Reddy .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2017, 139 (01) :171-178
[2]   Synergistically Enhanced Polysulfide Chemisorption Using a Flexible Hybrid Separator with N and S Dual-Doped Mesoporous Carbon Coating for Advanced Lithium-Sulfur Batteries [J].
Balach, Juan ;
Singh, Harish K. ;
Gomoll, Selina ;
Jaumann, Tony ;
Klose, Markus ;
Oswald, Steffen ;
Richter, Manuel ;
Eckert, Juergen ;
Giebeler, Lars .
ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (23) :14586-14595
[3]   Facile Synthesis of Crumpled Nitrogen-Doped MXene Nanosheets as a New Sulfur Host for Lithium-Sulfur Batteries [J].
Bao, Weizhai ;
Liu, Lin ;
Wang, Chengyin ;
Choi, Sinho ;
Wang, Dan ;
Wang, Guoxiu .
ADVANCED ENERGY MATERIALS, 2018, 8 (13)
[4]   In-situ X-ray diffraction studies of lithium-sulfur batteries [J].
Canas, Natalia A. ;
Wolf, Steffen ;
Wagner, Norbert ;
Friedrich, K. Andreas .
JOURNAL OF POWER SOURCES, 2013, 226 :313-319
[5]   Covalently Grafted Polysulfur-Graphene Nanocomposites for Ultrahigh Sulfur-Loading Lithium Polysulfur Batteries [J].
Chang, Chi-Hao ;
Manthiram, Arumugam .
ACS ENERGY LETTERS, 2018, 3 (01) :72-77
[6]   Metallic and polar Co9S8 inlaid carbon hollow nanopolyhedra as efficient polysulfide mediator for lithium-sulfur batteries [J].
Chen, Tao ;
Ma, Lianbo ;
Cheng, Baorui ;
Chen, Renpeng ;
Hu, Yi ;
Zhu, Guoyin ;
Wang, Yanrong ;
Liang, Jia ;
Tie, Zuoxiu ;
Liu, Jie ;
Jin, Zhong .
NANO ENERGY, 2017, 38 :239-248
[7]   Black Phosphorus Nanosheet-Based Drug Delivery System for Synergistic Photodynamic/Photothermal/Chemotherapy of Cancer [J].
Chen, Wansong ;
Ouyang, Jiang ;
Liu, Hong ;
Chen, Min ;
Zeng, Ke ;
Sheng, Jianping ;
Liu, Zhenjun ;
Han, Yajing ;
Wang, Liqiang ;
Li, Juan ;
Deng, Liu ;
Liu, You-Nian ;
Guo, Shaojun .
ADVANCED MATERIALS, 2017, 29 (05)
[8]   Direct observation of lithium polysulfides in lithium-sulfur batteries using operando X-ray diffraction [J].
Conder, Joanna ;
Bouchet, Renaud ;
Trabesinger, Sigita ;
Marino, Cyril ;
Gubler, Lorenz ;
Villevieille, Claire .
NATURE ENERGY, 2017, 2 (06)
[9]   Mechanism and Kinetics of Li2S Precipitation in Lithium-Sulfur Batteries [J].
Fan, Frank Y. ;
Carter, W. Craig ;
Chiang, Yet-Ming .
ADVANCED MATERIALS, 2015, 27 (35) :5203-5209
[10]   Polysulfide immobilization and conversion on a conductive polar MoC@MoOx material for lithium-sulfur batteries [J].
Fang, Ruopian ;
Zhao, Shiyong ;
Sun, Zhenhua ;
Wang, Da-Wei ;
Amal, Rose ;
Wang, Shaogang ;
Cheng, Hui-Ming ;
Li, Feng .
ENERGY STORAGE MATERIALS, 2018, 10 :56-61