Semi-supervised Wafer Map Pattern Recognition using Domain-Specific Data Augmentation and Contrastive Learning

被引:13
作者
Hu, Hanbin [1 ]
He, Chen [2 ]
Li, Peng [1 ]
机构
[1] Univ Calif Santa Barbara, Elect & Comp Engn, Santa Barbara, CA 93105 USA
[2] NXP Semicond, Austin, TX 78735 USA
来源
2021 IEEE INTERNATIONAL TEST CONFERENCE (ITC 2021) | 2021年
基金
美国国家科学基金会;
关键词
wafer map pattern recognition; semi-supervised learning; contrastive learning;
D O I
10.1109/ITC50571.2021.00019
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Wafer map pattern recognition is instrumental for detecting systemic manufacturing process issues. However, high cost in labeling wafer patterns renders it impossible to leverage large amounts of valuable unlabeled data in conventional machine learning based wafer map pattern prediction. We proposed a contrastive learning framework for semi-supervised learning and prediction of wafer map patterns. Our framework incorporates an encoder to learn good representation for wafer maps in an unsupervised manner, and a supervised head to recognize wafer map patterns. In particular, contrastive learning is applied for the unsupervised encoder representation learning supported by augmented data generated by different transformations (views) of wafer maps. We identified a set of transformations to effectively generate similar variants of each original pattern. We further proposed a novel rotation-twist transformation to augment wafer map data by rotating each given wafer map for which the angle of rotation is a smooth function of the radius. Experimental results demonstrate that the proposed semi-supervised learning framework greatly improves recognition accuracy compared to traditional supervised methods, and the rotation-twist transformation further enhances the recognition accuracy in both semi-supervised and supervised tasks.
引用
收藏
页码:113 / 122
页数:10
相关论文
共 17 条
[1]   Wafer Map Defect Patterns Classification using Deep Selective Learning [J].
Alawieh, Mohamed Baker ;
Boning, Duane ;
Pan, David Z. .
PROCEEDINGS OF THE 2020 57TH ACM/EDAC/IEEE DESIGN AUTOMATION CONFERENCE (DAC), 2020,
[2]  
Chen T., 2020, ARXIV200610029CSSTAT
[3]  
Chen T, 2020, PR MACH LEARN RES, V119
[4]  
Deng J, 2009, PROC CVPR IEEE, P248, DOI 10.1109/CVPRW.2009.5206848
[5]   Wafer Defect Map Classification Using Sparse Convolutional Networks [J].
di Bella, Roberto ;
Carrera, Diego ;
Rossi, Beatrice ;
Fragneto, Pasqualina ;
Boracchi, Giacomo .
IMAGE ANALYSIS AND PROCESSING - ICIAP 2019, PT II, 2019, 11752 :125-136
[6]  
Du D.-Y., 2020, PROC IEEE 15 INT C S, P1, DOI 10.1109/ICSICT49897.2020.9278021
[7]  
Fan MY, 2016, Adv Inform Managemen, P912, DOI 10.1109/IMCEC.2016.7867343
[8]   Smooth Random Functions, Random ODEs, and Gaussian Processes [J].
Filip, Silviu ;
Javeed, Aurya ;
Trefethen, Lloyd N. .
SIAM REVIEW, 2019, 61 (01) :185-205
[9]   Self-Supervised Representation Learning for Wafer Bin Map Defect Pattern Classification [J].
Kahng, Hyungu ;
Kim, Seoung Bum .
IEEE TRANSACTIONS ON SEMICONDUCTOR MANUFACTURING, 2021, 34 (01) :74-86
[10]  
King DB, 2015, ACS SYM SER, V1214, P1, DOI 10.1021/bk-2015-1214.ch001