The biohybrid artificial pancreas (BAP), a promising therapy for type 1 diabetes, faces several obstacles such as the need for a large implantation volume of encapsulated islets because of low functionality. To address such problems, in this study we examined long-term insulinotropic activity of glucagon-like peptide-1 (GLP-1)/polymer conjugate [VAPG: poly(N-vinylpyrrolidone-co-acrylic acid-g-PEG) (VAP) -GLP-1] as well as GLP-1/Zn2+ crystal by coencapsulation with islets. Microcapsules with VAPG or crystal produced round-shaped beads whereas free GLP-1 showed poor capsule morphology. A perfusion experiment suggested that VAPG showed higher bioactivity than did microcapsules with GLP-1/Zn2+. In long-term culture (200 mg of glucose/dL [G]), VAPG also enhanced insulinotropic activity over 5 weeks compared with the crystal form of GLP-1. However, maintenance of the high bioactivity of VAPG suddenly declined after week 5, possibly because of degradation, metabolism, and overstimulation. Basal (50 G) and glucose-stimulated (300 G) levels of insulin secretion confirmed a see-saw pattern in which the VAPG gradually decreased insulin secretion from encapsulated islets and then fell below the insulin level secreted from microcapsules containing GLP-1/Zn2+ crystal. Viability of the microcapsulated islets of each group was not significantly different. Consequently, the coencapsulation of VAPG or GLP-1/Zn2+ crystal can be a potential approach to reducing BAP volume with further optimization of activity duration.