Simple improved confidence intervals for comparing matched proportions

被引:81
作者
Agresti, A [1 ]
Min, YY [1 ]
机构
[1] Univ Florida, Dept Stat, Gainesville, FL 32611 USA
关键词
binomial distribution; difference of proportions; logit model; odds ratio; score confidence interval; Wald confidence interval;
D O I
10.1002/sim.1781
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
For binary matched-pairs data, this article discusses interval estimation of the difference of probabilities and an odds ratio for comparing 'success' probabilities. We present simple improvements of the commonly used Wald confidence intervals for these parameters. The improvement of the interval for the difference of probabilities is to add two observations to each sample before applying it. The improvement for estimating an odds ratio transforms a confidence interval for a single proportion. Copyright (C) 2005 John Wiley Sons, Ltd.
引用
收藏
页码:729 / 740
页数:12
相关论文
共 28 条
[1]   Simple and effective confidence intervals for proportions and differences of proportions result from adding two successes and two failures [J].
Agresti, A ;
Caffo, B .
AMERICAN STATISTICIAN, 2000, 54 (04) :280-288
[2]   Approximate is better than "exact" for interval estimation of binomial proportions [J].
Agresti, A ;
Coull, BA .
AMERICAN STATISTICIAN, 1998, 52 (02) :119-126
[3]   On logit confidence intervals for the odds ratio with small samples [J].
Agresti, A .
BIOMETRICS, 1999, 55 (02) :597-602
[4]  
Andersen E.B., 1980, DISCRETE STAT MODELS
[5]  
[Anonymous], 2011, Categorical data analysis
[6]  
Berry DA, 1996, STAT BAYESIAN PERSPE
[7]   Confidence curves and improved exact confidence intervals for discrete distributions [J].
Blaker, H .
CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2000, 28 (04) :783-798
[8]  
BRESLOW NE, 1980, STAT METHODS CANC RE, P165
[9]   Interval estimation for a binomial proportion - Comment - Rejoinder [J].
Brown, LD ;
Cai, TT ;
DasGupta, A ;
Agresti, A ;
Coull, BA ;
Casella, G ;
Corcoran, C ;
Mehta, C ;
Ghosh, M ;
Santner, TJ ;
Brown, LD ;
Cai, TT ;
DasGupta, A .
STATISTICAL SCIENCE, 2001, 16 (02) :101-133
[10]  
COX DR, 1958, BIOMETRIKA, V45, P562, DOI 10.1093/biomet/45.3-4.562