Numerical inversion of the Laplace transform via fractional moments

被引:10
作者
Tagliani, A [1 ]
Velásquez, Y
机构
[1] Univ Trent, Fac Econ, I-38100 Trent, Italy
[2] Univ Metropolitana, Escuela Ingn Sistemas, Caracas 1050A, Venezuela
关键词
fractional moments; generalized Hausdorff moment problem; Hankel matrix; Laplace transform inversion; maximum entropy;
D O I
10.1016/S0096-3003(02)00349-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A method for the numerical inversion of Laplace transform on the real line of heavy-tailed (probability) density functions is presented. The method assumes as known a finite set of real values of the Laplace transform and chooses the analytical form of the approximant maximizing Shannon-entropy, so that positivity of the approximant itself is guaranteed. The problem resorts to a finite fractional Hausdorff moment problem and some results of convergence are provided. Some numerical results are illustrated. (C) 2002 Elsevier Science Inc. All rights reserved.
引用
收藏
页码:99 / 107
页数:9
相关论文
共 5 条
[1]  
[Anonymous], 1992, ENTROPY OPTIMIZATION, DOI DOI 10.1007/978-94-011-2430
[2]   NUMERICAL INVERSION OF THE LAPLACE TRANSFORM - SURVEY AND COMPARISON OF METHODS [J].
DAVIES, B ;
MARTIN, B .
JOURNAL OF COMPUTATIONAL PHYSICS, 1979, 33 (01) :1-32
[3]  
Jaynes E.T., 1979, The maximum entropy principle, P15
[5]  
SHOHAT JA, 1963, PROBLEM MOMENTS, P1