Grouped sparse Bayesian learning for voxel selection in multivoxel pattern analysis of fMRI data

被引:12
作者
Wen, Zhenfu [1 ,2 ]
Yu, Tianyou [1 ,2 ]
Yu, Zhuliang [1 ,2 ]
Li, Yuanqing [1 ,2 ]
机构
[1] South China Univ Technol, Ctr Brain Comp Interfaces & Brain Informat Proc, Guangzhou 510640, Guangdong, Peoples R China
[2] Guangzhou Key Lab Brain Comp Interact & Applicat, Guangzhou 510640, Guangdong, Peoples R China
关键词
Multivoxel pattern analysis (MVPA); Voxel selection; Sparse Bayesian learning; Automatic relevance determination (ARD); VARIABLE SELECTION; NEURAL RESPONSE; VECTOR MACHINE; BRAIN; CLASSIFICATION; PREDICTION; PARCELLATION; CLASSIFIERS; MODEL; REGULARIZATION;
D O I
10.1016/j.neuroimage.2018.09.031
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Multivoxel pattern analysis (MVPA) methods have been widely applied in recent years to classify human brain states in functional magnetic resonance imaging (fMRI) data analysis. Voxel selection plays an important role in MVPA studies not only because it can improve decoding accuracy but also because it is useful for understanding brain functions. There are many voxel selection methods that have been proposed in fMRI literature. However, most of these methods either overlook the structure information of fMRI data or require additional crossvalidation procedures to determine the hyperparameters of the models. In the present work, we proposed a voxel selection method for binary brain decoding called group sparse Bayesian logistic regression (GSBLR). This method utilizes the group sparse property of fMRI data by using a grouped automatic relevance determination (GARD) as a prior for model parameters. All the parameters in the GSBLR can be estimated automatically, thereby avoiding additional cross-validation. Experimental results based on two publicly available fMRI datasets and simulated datasets demonstrate that GSBLR achieved better classification accuracies and yielded more stable solutions than several state-of-the-art methods.
引用
收藏
页码:417 / 430
页数:14
相关论文
共 70 条
[1]   Machine learning for neuroirnaging with scikit-learn [J].
Abraham, Alexandre ;
Pedregosa, Fabian ;
Eickenberg, Michael ;
Gervais, Philippe ;
Mueller, Andreas ;
Kossaifi, Jean ;
Gramfort, Alexandre ;
Thirion, Bertrand ;
Varoquaux, Gael .
FRONTIERS IN NEUROINFORMATICS, 2014, 8
[2]  
[Anonymous], 2009, Ariz State Univ
[3]  
Baldassarre L., 2012, 2012 2nd International Workshop on Pattern Recognition in NeuroImaging (PRNI), P5, DOI 10.1109/PRNI.2012.31
[4]  
BISHOP C. M., 2006, Pattern recognition and machine learning, DOI [DOI 10.1117/1.2819119, 10.1007/978-0-387-45528-0]
[5]   The use of the area under the roc curve in the evaluation of machine learning algorithms [J].
Bradley, AP .
PATTERN RECOGNITION, 1997, 30 (07) :1145-1159
[6]   Prediction and interpretation of distributed neural activity with sparse models [J].
Carroll, Melissa K. ;
Cecchi, Guillermo A. ;
Rish, Irina ;
Garg, Rahul ;
Rao, A. Ravishankar .
NEUROIMAGE, 2009, 44 (01) :112-122
[7]   LIBSVM: A Library for Support Vector Machines [J].
Chang, Chih-Chung ;
Lin, Chih-Jen .
ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY, 2011, 2 (03)
[8]   Voxel Selection Framework in Multi-Voxel Pattern Analysis of fMRI Data for Prediction of Neural Response to Visual Stimuli [J].
Chou, Chun-An ;
Kampa, Kittipat ;
Mehta, Sonya H. ;
Tungaraza, Rosalia F. ;
Chaovalitwongse, W. Art ;
Grabowski, Thomas J. .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2014, 33 (04) :925-934
[9]   A whole brain fMRI atlas generated via spatially constrained spectral clustering [J].
Craddock, R. Cameron ;
James, G. Andrew ;
Holtzheimer, Paul E., III ;
Hu, Xiaoping P. ;
Mayberg, Helen S. .
HUMAN BRAIN MAPPING, 2012, 33 (08) :1914-1928
[10]   Combining multivariate voxel selection and support vector machines for mapping and classification of fMRI spatial patterns [J].
De Martino, Federico ;
Valente, Giancarlo ;
Staeren, Noel ;
Ashburner, John ;
Goebel, Rainer ;
Formisano, Elia .
NEUROIMAGE, 2008, 43 (01) :44-58