Origin of strong red emission in Er3+-based upconversion materials: role of intermediate states and cross relaxation

被引:27
作者
Lee, Chiho [1 ,2 ]
Park, Heeyeon [3 ]
Kim, Woong [3 ]
Park, Sungnam [1 ,2 ,4 ]
机构
[1] Korea Univ, Dept Chem, 145 Anam Ro, Seoul 02841, South Korea
[2] Korea Univ, Res Inst Nat Sci, 145 Anam Ro, Seoul 02841, South Korea
[3] Korea Univ, Dept Mat Sci & Engn, 145 Anam Ro, Seoul 02841, South Korea
[4] Korea Univ, Green Sch, 145 Anam Ro, Seoul 02841, South Korea
基金
新加坡国家研究基金会;
关键词
DOPANT-CONTROLLED SYNTHESIS; LANTHANIDE-DOPED NAYF4; CHARGE-TRANSFER; NANOPARTICLES; LUMINESCENCE; NANOCRYSTALS; CORE; NANOPHOSPHORS; FLUORESCENCE; ENHANCEMENT;
D O I
10.1039/c9cp04692e
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Among the various upconversion (UC) materials, sodium yttrium fluoride doped with ytterbium and erbium (NaYF4:Yb3+,Er3+) is the most widely studied owing to its high UC efficiency. Nonetheless, UC mechanisms are not yet fully understood and, in particular, near-infrared-to-red UC mechanisms are still under debate. Herein, we examine UC mechanisms in Er3+-based UC materials. Most importantly, the F-4(3/2) and F-4(5/2) states of Er3+ were found to be important intermediate states for strong red emission, for the first time. The cross relaxation between the Er3+ ions, back energy transfer from Er3+ to Yb3+, and relative doping concentrations of Er3+ and Yb3+ in NaYF4:Yb3+,Er3+ were found to play important roles in the relative intensity between red and green emissions. The proposed UC mechanism will provide design principles for various Er3+-based UC materials.
引用
收藏
页码:24026 / 24033
页数:8
相关论文
共 42 条
[1]   Revisiting the NIR-to-Visible Upconversion Mechanism in β-NaYF4:Yb3+,Er3+ [J].
Anderson, Robert B. ;
Smith, Steve J. ;
May, P. Stanley ;
Berry, Mary T. .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2014, 5 (01) :36-42
[2]   Disputed Mechanism for NIR-to-Red Upconversion Luminescence in NaYF4:Yb3+,Er3+ [J].
Berry, Mary T. ;
May, P. Stanley .
JOURNAL OF PHYSICAL CHEMISTRY A, 2015, 119 (38) :9805-9811
[3]   Absolute quantum yield measurements of colloidal NaYF4: Er3+, Yb3+ upconverting nanoparticles [J].
Boyer, John-Christopher ;
van Veggel, Frank C. J. M. .
NANOSCALE, 2010, 2 (08) :1417-1419
[4]   Highly intense upconversion luminescence in Yb/Er:NaGdF4@NaYF4 core-shell nanocrystals with complete shell enclosure of the core [J].
Chen, Daqin ;
Huang, Ping .
DALTON TRANSACTIONS, 2014, 43 (29) :11299-11304
[5]   (α-NaYbF4:Tm3+)/CaF2 Core/Shell Nanoparticles with Efficient Near-Infrared to Near-Infrared Upconversion for High-Contrast Deep Tissue Bioimaging [J].
Chen, Guanying ;
Shen, Jie ;
Ohulchanskyy, Tymish Y. ;
Patel, Nayan J. ;
Kutikov, Artem ;
Li, Zhipeng ;
Song, Jie ;
Pandey, Ravindra K. ;
Agren, Hans ;
Prasad, Paras N. ;
Han, Gang .
ACS NANO, 2012, 6 (09) :8280-8287
[6]   Intense Visible and Near-Infrared Upconversion Photoluminescence in Colloidal LiYF4:Er3+ Nanocrystals under Excitation at 1490 nm [J].
Chen, Guanying ;
Ohulchanskyy, Tymish Y. ;
Kachynski, Aliaksandr ;
Agren, Hans ;
Prasad, Paras N. .
ACS NANO, 2011, 5 (06) :4981-4986
[7]   Ultrasmall Monodisperse NaYF4:Yb3+/Tm3+ Nanocrystals with Enhanced Near-Infrared to Near-Infrared Upconversion Photoluminescence [J].
Chen, Guanying ;
Ohulchanskyy, Tymish Y. ;
Kumar, Rajiv ;
Agren, Hans ;
Prasad, Prasas N. .
ACS NANO, 2010, 4 (06) :3163-3168
[8]   Versatile synthesis strategy for carboxylic acid-functionalized upconverting nanophosphors as biological labels [J].
Chen, Zhigang ;
Chen, Huili ;
Hu, He ;
Yu, Mengxiao ;
Li, Fuyou ;
Zhang, Qiang ;
Zhou, Zhiguo ;
Yi, Tao ;
Huang, Chunhui .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2008, 130 (10) :3023-3029
[9]   In Vivo Multimodality Imaging and Cancer Therapy by Near-Infrared Light-Triggered trans-Platinum Pro-Drug-Conjugated Upconverison Nanoparticles [J].
Dai, Yunlu ;
Xiao, Haihua ;
Liu, Jianhua ;
Yuan, Qinghai ;
Ma, Ping'an ;
Yang, Dongmei ;
Li, Chunxia ;
Cheng, Ziyong ;
Hou, Zhiyao ;
Yang, Piaoping ;
Lin, Jun .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2013, 135 (50) :18920-18929
[10]   A three-color, solid-state, three-dimensional display [J].
Downing, E ;
Hesselink, L ;
Ralston, J ;
Macfarlane, R .
SCIENCE, 1996, 273 (5279) :1185-1189