Explicit factorization of x1lm1l2m2l3m3 - a and a-constacyclic codes over a finite field

被引:0
|
作者
Rakphon, Supakarn [1 ]
Chongchitmate, Wutichai [1 ]
Phuto, Jirayu [2 ]
Klin-eam, Chakkrid [2 ]
机构
[1] Chulalongkorn Univ, Fac Sci, Dept Math & Comp Sci, Bangkok, Thailand
[2] Naresuan Univ, Fac Sci, Dept Math, Phitsanulok, Thailand
关键词
Constacyclic codes; cyclotomic coset; generator polynomials; irreducible factor polynomials;
D O I
10.1080/00927872.2022.2072854
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let F-q be a finite field of order q, t be a prime and m(1), m(2), m(3) be positive integers. In this article, we find all irreducible divisors of x(1)(lm1l2m2l3m3) - a over F-q where a is an element of F-q* and q(t) - 1 = l(1)(V1)l(2)(V2)l(3)(V3) c such that l(1), l(2), l(3) are distinct odd primes and c is a positive integer with gcd(l(1) l(2) l(3), c) = 1 and gcd(l(1)l(2)l(3), q(q - 1)) = 1. Moreover, we construct an a-constacyclic code by using these irreducible divisors.
引用
收藏
页码:4725 / 4745
页数:21
相关论文
共 13 条
  • [1] Lee distance of cyclic and (1+uγ)-constacyclic codes of length 2s over F2m + uF2m
    Hai Q Dinh
    Kewat, Pramod Kumar
    Mondal, Nilay Kumar
    DISCRETE MATHEMATICS, 2021, 344 (11)
  • [2] Explicit Representation and Enumeration of Repeated-Root (δ plus αu2)-Constacyclic Codes Over F2m[u]/⟨u⟩2λ⟩
    Cao, Yuan
    Cao, Yonglin
    Dinh, Hai Q.
    Bag, Tushar
    Yamaka, Woraphon
    IEEE ACCESS, 2020, 8 : 55550 - 55562
  • [3] (1-2u3)-constacyclic codes and quadratic residue codes over Fp[u]/⟨u4 - u⟩
    Raka, Madhu
    Kathuria, Leetika
    Goyal, Mokshi
    CRYPTOGRAPHY AND COMMUNICATIONS-DISCRETE-STRUCTURES BOOLEAN FUNCTIONS AND SEQUENCES, 2017, 9 (04): : 459 - 473
  • [4] Lee Distance of (4z 1)-Constacyclic Codes of Length 2s Over the Galois Ring GR(2a,m)
    Dinh, Hai Q.
    Kewat, Pramod Kumar
    Mondal, Nilay Kumar
    IEEE COMMUNICATIONS LETTERS, 2021, 25 (07) : 2114 - 2117
  • [5] Complete classification of (δ plus αu2)-constacyclic codes over F3m[u]/⟨u4⟩ of length 3n
    Cao, Yuan
    Cao, Yonglin
    Dong, Li
    APPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTING, 2018, 29 (01) : 13 - 39
  • [6] Quantum Codes Obtained From Constacyclic Codes Over a Family of Finite Rings Fp[u1, u2, ... , us]
    Dinh, Hai Q.
    Bag, Tushar
    Pathak, Sachin
    Upadhyay, Ashish Kumar
    Chinnakum, Warattaya
    IEEE ACCESS, 2020, 8 : 194082 - 194091
  • [7] IDENTIFYING CYCLIC AND (1+2v)-CONSTACYCLIC CODES OVER Z4[v]/(v3-1) WITH Z4-LINEAR CODES
    Kom, St T.
    Devi, O. Ratnabala
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2023, 13 (03): : 951 - 962
  • [8] Constacyclic codes over Fq[u1, u2, ..., uk]/(u3i - ui, uiuj - ujui ) and their applications of constructing quantum codes
    Ji, Zhulin
    Zhang, Shunhua
    QUANTUM INFORMATION PROCESSING, 2022, 22 (01)
  • [9] Non-binary quantum codes from constacyclic codes over Fq[u1, u2, ..., uk]/⟨ui3 = ui, uiuj = ujui⟩
    Kong, Bo
    Zheng, Xiying
    OPEN MATHEMATICS, 2022, 20 (01): : 1013 - 1020
  • [10] Constacyclic codes over the ring Fq [u, v, w]/⟨u2 - 1, v2 - 1, w3 - w, uv - vu, vw - wv, wu - uw⟩
    Zhang, Shunhua
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2022, 14 (06)