The ligand binding mechanism to purine nucleoside phosphorylase elucidated via molecular dynamics and machine learning

被引:88
作者
Decherchi, Sergio [1 ,2 ]
Berteotti, Anna [3 ]
Bottegoni, Giovanni [3 ]
Rocchia, Walter [1 ]
Cavalli, Andrea [3 ,4 ]
机构
[1] Ist Italiano Tecnol, CONCEPT Lab, I-16163 Genoa, Italy
[2] BiKi Technol Srl, I-16121 Genoa, Italy
[3] Ist Italiano Tecnol, CompuNet, I-16163 Genoa, Italy
[4] Univ Bologna, Dept Pharm & Biotechnol, I-40126 Bologna, Italy
关键词
TARGET BINDING; INHIBITORS; ALGORITHM; NETWORK; TIME;
D O I
10.1038/ncomms7155
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The study of biomolecular interactions between a drug and its biological target is of paramount importance for the design of novel bioactive compounds. In this paper, we report on the use of molecular dynamics (MD) simulations and machine learning to study the binding mechanism of a transition state analogue (DADMe-immucillin-H) to the purine nucleoside phosphorylase (PNP) enzyme. Microsecond-long MD simulations allow us to observe several binding events, following different dynamical routes and reaching diverse binding configurations. These simulations are used to estimate kinetic and thermodynamic quantities, such as k(on) and binding free energy, obtaining a good agreement with available experimental data. In addition, we advance a hypothesis for the slow-onset inhibition mechanism of DADMe-immucillin-H against PNP. Combining extensive MD simulations with machine learning algorithms could therefore be a fruitful approach for capturing key aspects of drug-target recognition and binding.
引用
收藏
页数:10
相关论文
共 35 条
[21]   Single-sweep methods for free energy calculations [J].
Maragliano, Luca ;
Vanden-Eijnden, Eric .
JOURNAL OF CHEMICAL PHYSICS, 2008, 128 (18)
[22]   One-third-the-sites transition-state inhibitors for purine nucleoside phosphorylase [J].
Miles, RW ;
Tyler, PC ;
Furneaux, RH ;
Bagdassarian, CK ;
Schramm, VL .
BIOCHEMISTRY, 1998, 37 (24) :8615-8621
[23]   A simple and fast algorithm for K-medoids clustering [J].
Park, Hae-Sang ;
Jun, Chi-Hyuck .
EXPERT SYSTEMS WITH APPLICATIONS, 2009, 36 (02) :3336-3341
[24]   Identification of slow molecular order parameters for Markov model construction [J].
Perez-Hernandez, Guillermo ;
Paul, Fabian ;
Giorgino, Toni ;
De Fabritiis, Gianni ;
Noe, Frank .
JOURNAL OF CHEMICAL PHYSICS, 2013, 139 (01)
[25]   Scalable molecular dynamics with NAMD [J].
Phillips, JC ;
Braun, R ;
Wang, W ;
Gumbart, J ;
Tajkhorshid, E ;
Villa, E ;
Chipot, C ;
Skeel, RD ;
Kalé, L ;
Schulten, K .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 2005, 26 (16) :1781-1802
[26]   NETWORKS FOR APPROXIMATION AND LEARNING [J].
POGGIO, T ;
GIROSI, F .
PROCEEDINGS OF THE IEEE, 1990, 78 (09) :1481-1497
[27]   L-enantiomers of transition state analogue inhibitors bound to human purine nucleoside phosphorylase [J].
Rinaldo-Matthis, Agnes ;
Murkin, Andrew S. ;
Ramagopal, Udupi A. ;
Clinch, Keith ;
Mee, Simon P. H. ;
Evans, Gary B. ;
Tyler, Peter C. ;
Furneaux, Richard H. ;
Almoj, Steven C. ;
Schramm, Vern L. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2008, 130 (03) :842-+
[28]   How Does a Drug Molecule Find Its Target Binding Site? [J].
Shan, Yibing ;
Kim, Eric T. ;
Eastwood, Michael P. ;
Dror, Ron O. ;
Seeliger, Markus A. ;
Shaw, David E. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2011, 133 (24) :9181-9183
[29]   Population Based Reweighting of Scaled Molecular Dynamics [J].
Sinko, William ;
Miao, Yinglong ;
de Oliveira, Cesar Augusto F. ;
McCammon, J. Andrew .
JOURNAL OF PHYSICAL CHEMISTRY B, 2013, 117 (42) :12759-12768
[30]   Estimating the number of clusters in a data set via the gap statistic [J].
Tibshirani, R ;
Walther, G ;
Hastie, T .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2001, 63 :411-423