The ligand binding mechanism to purine nucleoside phosphorylase elucidated via molecular dynamics and machine learning

被引:88
作者
Decherchi, Sergio [1 ,2 ]
Berteotti, Anna [3 ]
Bottegoni, Giovanni [3 ]
Rocchia, Walter [1 ]
Cavalli, Andrea [3 ,4 ]
机构
[1] Ist Italiano Tecnol, CONCEPT Lab, I-16163 Genoa, Italy
[2] BiKi Technol Srl, I-16121 Genoa, Italy
[3] Ist Italiano Tecnol, CompuNet, I-16163 Genoa, Italy
[4] Univ Bologna, Dept Pharm & Biotechnol, I-40126 Bologna, Italy
关键词
TARGET BINDING; INHIBITORS; ALGORITHM; NETWORK; TIME;
D O I
10.1038/ncomms7155
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The study of biomolecular interactions between a drug and its biological target is of paramount importance for the design of novel bioactive compounds. In this paper, we report on the use of molecular dynamics (MD) simulations and machine learning to study the binding mechanism of a transition state analogue (DADMe-immucillin-H) to the purine nucleoside phosphorylase (PNP) enzyme. Microsecond-long MD simulations allow us to observe several binding events, following different dynamical routes and reaching diverse binding configurations. These simulations are used to estimate kinetic and thermodynamic quantities, such as k(on) and binding free energy, obtaining a good agreement with available experimental data. In addition, we advance a hypothesis for the slow-onset inhibition mechanism of DADMe-immucillin-H against PNP. Combining extensive MD simulations with machine learning algorithms could therefore be a fruitful approach for capturing key aspects of drug-target recognition and binding.
引用
收藏
页数:10
相关论文
共 35 条
[11]   Molecular dynamics simulations and drug discovery [J].
Durrant, Jacob D. ;
McCammon, J. Andrew .
BMC BIOLOGY, 2011, 9
[12]  
Frisch M. J., 2016, GAUSSIAN 16
[13]   ACEMD: Accelerating Biomolecular Dynamics in the Microsecond Time Scale [J].
Harvey, M. J. ;
Giupponi, G. ;
De Fabritiis, G. .
JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2009, 5 (06) :1632-1639
[14]   Conformational Dynamics in Human Purine Nucleoside Phosphorylase with Reactants and Transition-State Analogues [J].
Hirschi, Jennifer S. ;
Arora, Karunesh ;
Brooks, Charles L., III ;
Schramm, Vern L. .
JOURNAL OF PHYSICAL CHEMISTRY B, 2010, 114 (49) :16263-16272
[15]   Four generations of transition-state analogues for human purine nucleoside phosphorylase [J].
Ho, Meng-Chiao ;
Shi, Wuxian ;
Rinaldo-Matthis, Agnes ;
Tyler, Peter C. ;
Evans, Gary B. ;
Clinch, Keith ;
Almo, Steven C. ;
Schramm, Vern L. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2010, 107 (11) :4805-4812
[16]   AMBER force-field parameters for phosphorylated amino acids in different protonation states: phosphoserine, phosphothreonine, phosphotyrosine, and phosphohistidine [J].
Homeyer, N ;
Horn, AHC ;
Lanig, H ;
Sticht, H .
JOURNAL OF MOLECULAR MODELING, 2006, 12 (03) :281-289
[17]   Foundations of Biomolecular Modeling [J].
Jorgensen, William L. .
CELL, 2013, 155 (06) :1199-1202
[18]   Atomic dissection of the hydrogen bond network for transition-state analogue binding to purine nucleoside phosphorylase [J].
Kicska, GA ;
Tyler, PC ;
Evans, GB ;
Furneaux, RH ;
Shi, WX ;
Fedorov, A ;
Lewandowicz, A ;
Cahill, SM ;
Almo, SC ;
Schramm, VL .
BIOCHEMISTRY, 2002, 41 (49) :14489-14498
[19]   Achieving the ultimate physiological goal in transition state analogue inhibitors for purine nucleoside phosphorylase [J].
Lewandowicz, A ;
Tyler, PC ;
Evans, GB ;
Furneaux, RH ;
Schramm, VL .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (34) :31465-31468
[20]   Improved side-chain torsion potentials for the Amber ff99SB protein force field [J].
Lindorff-Larsen, Kresten ;
Piana, Stefano ;
Palmo, Kim ;
Maragakis, Paul ;
Klepeis, John L. ;
Dror, Ron O. ;
shaw, David E. .
PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2010, 78 (08) :1950-1958