Predictive Model of Lyme Disease Epidemic Process Using Machine Learning Approach

被引:6
作者
Chumachenko, Dmytro [1 ]
Piletskiy, Pavlo [1 ]
Sukhorukova, Marya [2 ]
Chumachenko, Tetyana [2 ]
机构
[1] Natl Aerosp Univ, Dept Math Modelling & Artificial Intelligence, Kharkiv Aviat Inst, UA-61072 Kharkiv, Ukraine
[2] Kharkiv Natl Med Univ, Dept Epidemiol, UA-61000 Kharkiv, Ukraine
来源
APPLIED SCIENCES-BASEL | 2022年 / 12卷 / 09期
关键词
epidemic model; Ixodes tick-borne borreliosis; Lyme disease; epidemic process simulation; machine learning; artificial intelligence; INFECTIOUS-DISEASE; TRANSMISSION; BORRELIOSIS; TICKS; SEASONALITY; SIMULATION; DYNAMICS; ECOLOGY;
D O I
10.3390/app12094282
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Lyme disease is the most prevalent tick-borne disease in Eastern Europe. This study focuses on the development of a machine learning model based on a neural network for predicting the dynamics of the Lyme disease epidemic process. A retrospective analysis of the Lyme disease cases reported in the Kharkiv region, East Ukraine, between 2010 and 2017 was performed. To develop the neural network model of the Lyme disease epidemic process, a multilayered neural network was used, and the backpropagation algorithm or the generalized delta rule was used for its learning. The adequacy of the constructed forecast was tested on real statistical data on the incidence of Lyme disease. The learning of the model took 22.14 s, and the mean absolute percentage error is 3.79%. A software package for prediction of the Lyme disease incidence on the basis of machine learning has been developed. Results of the simulation have shown an unstable epidemiological situation of Lyme disease, which requires preventive measures at both the population level and individual protection. Forecasting is of particular importance in the conditions of hostilities that are currently taking place in Ukraine, including endemic territories.
引用
收藏
页数:24
相关论文
共 74 条
[11]   Recent Progress in Lyme Disease and Remaining Challenges [J].
Bobe, Jason R. ;
Jutras, Brandon L. ;
Horn, Elizabeth J. ;
Embers, Monica E. ;
Bailey, Allison ;
Moritz, Robert L. ;
Zhang, Ying ;
Soloski, Mark J. ;
Ostfeld, Richard S. ;
Marconi, Richard T. ;
Aucott, John ;
Ma'ayan, Avi ;
Keesing, Felicia ;
Lewis, Kim ;
Ben Mamoun, Choukri ;
Rebman, Alison W. ;
McClune, Mecaila E. ;
Breitschwerdt, Edward B. ;
Reddy, Panga Jaipal ;
Maggi, Ricardo ;
Yang, Frank ;
Nemser, Bennett ;
Ozcan, Aydogan ;
Garner, Omai ;
Di Carlo, Dino ;
Ballard, Zachary ;
Joung, Hyou-Arm ;
Garcia-Romeu, Albert ;
Griffiths, Roland R. ;
Baumgarth, Nicole ;
Fallon, Brian A. .
FRONTIERS IN MEDICINE, 2021, 8
[12]   The Kermack-McKendrick epidemic model revisited [J].
Brauer, F .
MATHEMATICAL BIOSCIENCES, 2005, 198 (02) :119-131
[13]   FluTE, a Publicly Available Stochastic Influenza Epidemic Simulation Model [J].
Chao, Dennis L. ;
Halloran, M. Elizabeth ;
Obenchain, Valerie J. ;
Longini, Ira M., Jr. .
PLOS COMPUTATIONAL BIOLOGY, 2010, 6 (01)
[14]   Estimates for Lyme borreliosis infections based on models using sentinel canine and human seroprevalence data [J].
Cook, Michael J. ;
Puri, Basant K. .
INFECTIOUS DISEASE MODELLING, 2020, 5 :871-888
[15]   The model repository of the models of infectious disease agent study [J].
Cooley, Phillip C. ;
Roberts, D. ;
Bakalov, V. D. ;
Bikmal, S. ;
Cantor, S. ;
Costandine, T. ;
Ganapathi, L. ;
Golla, B. J. ;
Grubbs, G. ;
Hollingsworth, C. ;
Li, S. ;
Qin, Y. ;
Savage, William ;
Simoni, D. ;
Solano, E. ;
Wagener, D. .
IEEE TRANSACTIONS ON INFORMATION TECHNOLOGY IN BIOMEDICINE, 2008, 12 (04) :513-522
[16]   Daniel Bernoulli's epidemiological model revisited [J].
Dietz, K ;
Heesterbeek, JAP .
MATHEMATICAL BIOSCIENCES, 2002, 180 :1-21
[17]   STEM: An Open Source Tool for Disease Modeling [J].
Douglas, Judith, V ;
Bianco, Simone ;
Edlund, Stefan ;
Engelhardt, Tekla ;
Filter, Matthias ;
Guenther, Taras ;
Hu, Kun ;
Nixon, Emily J. ;
Sevilla, Nereyda L. ;
Swaid, Ahmad ;
Kaufman, James H. .
HEALTH SECURITY, 2019, 17 (04) :291-306
[18]   "Ticking Bomb": The Impact of Climate Change on the Incidence of Lyme Disease [J].
Dumic, Igor ;
Severnini, Edson .
CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY, 2018, 2018
[19]   The influenza pandemic preparedness planning tool InfluSim [J].
Eichner, Martin ;
Schwehm, Markus ;
Duerr, Hans-Peter ;
Brockmann, Stefan O. .
BMC INFECTIOUS DISEASES, 2007, 7 (1)
[20]   The Blacklegged Tick, Ixodes scapularis: An Increasing Public Health Concern [J].
Eisen, Rebecca J. ;
Eisen, Lars .
TRENDS IN PARASITOLOGY, 2018, 34 (04) :295-309