Systematic Error-Correcting Codes for Rank Modulation

被引:37
作者
Zhou, Hongchao [1 ]
Schwartz, Moshe [2 ]
Jiang, Anxiao [3 ]
Bruck, Jehoshua [4 ]
机构
[1] MIT, Elect Res Lab, Cambridge, MA 02139 USA
[2] Ben Gurion Univ Negev, Dept Elect & Comp Engn, IL-8410501 Beer Sheva, Israel
[3] Texas A&M Univ, Dept Comp Sci & Engn, College Stn, TX 77843 USA
[4] CALTECH, Dept Elect Engn, Pasadena, CA 91125 USA
基金
美国国家科学基金会;
关键词
Flash memory; rank modulation; error-correcting codes; permutations; metric embeddings; Kendall's tau-metric; l(infinity)-metric; systematic codes;
D O I
10.1109/TIT.2014.2365499
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The rank-modulation scheme has been recently proposed for efficiently storing data in nonvolatile memories. In this paper, we explore [n, k, d] systematic error-correcting codes for rank modulation. Such codes have length n, k information symbols, and minimum distance d. Systematic codes have the benefits of enabling efficient information retrieval in conjunction with memory-scrubbing schemes. We study systematic codes for rank modulation under Kendall's t-metric as well as under the l(infinity)-metric. In Kendall's tau-metric, we present [k + 2, k, 3] systematic codes for correcting a single error, which have optimal rates, unless systematic perfect codes exist. We also study the design of multierror-correcting codes, and provide a construction of [k + t + 1, k, 2t + 1] systematic codes, for large-enough k. We use nonconstructive arguments to show that for rank modulation, systematic codes achieve the same capacity as general error-correcting codes. Finally, in the l(infinity)-metric, we construct two [n, k, d] systematic multierror-correcting codes, the first for the case of d = O(1) and the second for d = Theta(n). In the latter case, the codes have the same asymptotic rate as the best codes currently known in this metric.
引用
收藏
页码:17 / 32
页数:16
相关论文
共 30 条
[1]  
[Anonymous], PERFECT PERMUTATIONS
[2]  
[Anonymous], CODE DESIGN DEPENDAB
[3]  
[Anonymous], 2008, An Introduction to the Theory of Numbers
[4]  
Awasthi M., 2012, PROC IEEE 18 INT S H, P1
[5]   Codes in Permutations and Error Correction for Rank Modulation [J].
Barg, Alexander ;
Mazumdar, Arya .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2010, 56 (07) :3158-3165
[6]   Phase change memory technology [J].
Burr, Geoffrey W. ;
Breitwisch, Matthew J. ;
Franceschini, Michele ;
Garetto, Davide ;
Gopalakrishnan, Kailash ;
Jackson, Bryan ;
Kurdi, Buelent ;
Lam, Chung ;
Lastras, Luis A. ;
Padilla, Alvaro ;
Rajendran, Bipin ;
Raoux, Simone ;
Shenoy, Rohit S. .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2010, 28 (02) :223-262
[7]  
Cappelletti P., 1999, FLASH MEMORIES, VFirst
[8]  
COVER TM, 1973, IEEE T INFORM THEORY, V19, P73, DOI 10.1109/TIT.1973.1054929
[9]   Error-Correction in Flash Memories via Codes in the Ulam Metric [J].
Farnoud , Farzad ;
Skachek, Vitaly ;
Milenkovic, Olgica .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2013, 59 (05) :3003-3020
[10]   PERFECT CODES IN LEE METRIC AND PACKING OF POLYOMINOES [J].
GOLOMB, SW ;
WELCH, LR .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1970, 18 (02) :302-+