We consider nonparametric estimation of a regression function that is identified by requiring a specified quantile of the regression "error" conditional on an instrumental variable to be zero. The resulting estimating equation is a nonlinear integral equation of the first kind, which generates an ill-posed inverse problem. The integral operator and distribution of the instrumental variable are unknown and must be estimated nonparametrically. We show that the estimator is mean-square consistent, derive its rate of convergence in probability, and give conditions under which this rate is optimal in a minimax sense. The results of Monte Carlo experiments show that the estimator behaves well in finite samples.
机构:
MIT, Dept Econ, 77 Massachusetts Ave, Cambridge, MA 02139 USA
MIT, Ctr Stat & Data Sci, 77 Massachusetts Ave, Cambridge, MA 02139 USAMIT, Dept Econ, 77 Massachusetts Ave, Cambridge, MA 02139 USA
Chernozhukov, Victor
Fernandez-Val, Ivan
论文数: 0引用数: 0
h-index: 0
机构:
Boston Univ, Econ, Boston, MA 02215 USAMIT, Dept Econ, 77 Massachusetts Ave, Cambridge, MA 02139 USA
Fernandez-Val, Ivan
Han, Sukjin
论文数: 0引用数: 0
h-index: 0
机构:
Univ Texas Austin, Econ, Austin, TX 78712 USAMIT, Dept Econ, 77 Massachusetts Ave, Cambridge, MA 02139 USA
Han, Sukjin
Kowalski, Amanda
论文数: 0引用数: 0
h-index: 0
机构:
Univ Michigan, Appl Econ & Publ Policy, Ann Arbor, MI 48109 USAMIT, Dept Econ, 77 Massachusetts Ave, Cambridge, MA 02139 USA