Nonparametric instrumental variables estimation of a quantile regression model

被引:74
作者
Horowitz, Joel L.
Lee, Sokbae
机构
[1] Northwestern Univ, Dept Econ, Evanston, IL 60208 USA
[2] UCL, Dept Econ, London WC1E 6BT, England
基金
英国经济与社会研究理事会;
关键词
statistical inverse; endogenous variable; instrumental variable; optimal rate; nonlinear integral equation; nonparametric regression;
D O I
10.1111/j.1468-0262.2007.00786.x
中图分类号
F [经济];
学科分类号
02 ;
摘要
We consider nonparametric estimation of a regression function that is identified by requiring a specified quantile of the regression "error" conditional on an instrumental variable to be zero. The resulting estimating equation is a nonlinear integral equation of the first kind, which generates an ill-posed inverse problem. The integral operator and distribution of the instrumental variable are unknown and must be estimated nonparametrically. We show that the estimator is mean-square consistent, derive its rate of convergence in probability, and give conditions under which this rate is optimal in a minimax sense. The results of Monte Carlo experiments show that the estimator behaves well in finite samples.
引用
收藏
页码:1191 / 1208
页数:18
相关论文
共 50 条
  • [31] NONPARAMETRIC INSTRUMENTAL VARIABLE ESTIMATION UNDER MONOTONICITY
    Chetverikov, Denis
    Wilhelm, Daniel
    ECONOMETRICA, 2017, 85 (04) : 1303 - 1320
  • [32] Instrumental variable quantile regression under random right censoring
    Beyhum, Jad
    Tedesco, Lorenzo
    Van Keilegom, Ingrid
    ECONOMETRICS JOURNAL, 2024, 27 (01) : 21 - 36
  • [33] Search for significant variables in nonparametric additive regression
    Hardle, W
    Korostelev, A
    BIOMETRIKA, 1996, 83 (03) : 541 - 549
  • [34] Censored quantile instrumental-variable estimation with Stata
    Chernozhukov, Victor
    Fernandez-Val, Ivan
    Han, Sukjin
    Kowalski, Amanda
    STATA JOURNAL, 2019, 19 (04) : 768 - 781
  • [35] Optimal Estimation of Derivatives in Nonparametric Regression
    Dai, Wenlin
    Tong, Tiejun
    Genton, Marc G.
    JOURNAL OF MACHINE LEARNING RESEARCH, 2016, 17
  • [36] Robust nonparametric estimation for spatial regression
    Gheriballah, Abdelkader
    Laksaci, Ali
    Rouane, Rachida
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2010, 140 (07) : 1656 - 1670
  • [37] NONPARAMETRIC REGRESSION ESTIMATION WITH MISSING DATA
    CHU, CK
    CHENG, PE
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1995, 48 (01) : 85 - 99
  • [38] On conditional variance estimation in nonparametric regression
    Siddhartha Chib
    Edward Greenberg
    Statistics and Computing, 2013, 23 : 261 - 270
  • [39] Consistency in nonparametric minimax regression estimation
    Belitser, E
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2002, 31 (07) : 1159 - 1165
  • [40] On nonparametric kernel estimation of the mode of the regression function in the random design model
    Ziegler, K
    JOURNAL OF NONPARAMETRIC STATISTICS, 2002, 14 (06) : 749 - 774