Nonparametric instrumental variables estimation of a quantile regression model

被引:74
作者
Horowitz, Joel L.
Lee, Sokbae
机构
[1] Northwestern Univ, Dept Econ, Evanston, IL 60208 USA
[2] UCL, Dept Econ, London WC1E 6BT, England
基金
英国经济与社会研究理事会;
关键词
statistical inverse; endogenous variable; instrumental variable; optimal rate; nonlinear integral equation; nonparametric regression;
D O I
10.1111/j.1468-0262.2007.00786.x
中图分类号
F [经济];
学科分类号
02 ;
摘要
We consider nonparametric estimation of a regression function that is identified by requiring a specified quantile of the regression "error" conditional on an instrumental variable to be zero. The resulting estimating equation is a nonlinear integral equation of the first kind, which generates an ill-posed inverse problem. The integral operator and distribution of the instrumental variable are unknown and must be estimated nonparametrically. We show that the estimator is mean-square consistent, derive its rate of convergence in probability, and give conditions under which this rate is optimal in a minimax sense. The results of Monte Carlo experiments show that the estimator behaves well in finite samples.
引用
收藏
页码:1191 / 1208
页数:18
相关论文
共 50 条
  • [21] Nonparametric estimation in a regression model with additive and multiplicative noise
    Chesneau, Christophe
    El Kolei, Salima
    Kou, Junke
    Navarro, Fabien
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2020, 380
  • [22] Fast Nonparametric Quantile Regression With Arbitrary Smoothing Methods
    Oh, Hee-Seok
    Lee, Thomas C. M.
    Nychka, Douglas W.
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2011, 20 (02) : 510 - 526
  • [23] A plug-in bandwidth selector for nonparametric quantile regression
    Mercedes Conde-Amboage
    César Sánchez-Sellero
    TEST, 2019, 28 : 423 - 450
  • [24] A plug-in bandwidth selector for nonparametric quantile regression
    Conde-Amboage, Mercedes
    Sanchez-Sellero, Cesar
    TEST, 2019, 28 (02) : 423 - 450
  • [25] NONPARAMETRIC REGRESSION WITH ERRORS-IN-VARIABLES
    FAN, JQ
    TRUONG, YK
    ANNALS OF STATISTICS, 1993, 21 (04) : 1900 - 1925
  • [26] Randomized quantile regression estimation for heteroskedastic non parametric model
    Xiong, Wei
    Tian, Maozai
    Tang, Man-Lai
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2017, 46 (10) : 5147 - 5179
  • [27] Estimation of nonparametric regression function
    Lungu, Ion
    Manole, Sorin
    ECONOMIC COMPUTATION AND ECONOMIC CYBERNETICS STUDIES AND RESEARCH, 2007, 41 (1-2) : 121 - 130
  • [28] Nonparametric Instrumental Regression With Right Censored Duration Outcomes
    Beyhum, Jad
    Florens, Jean-Pierre
    Van Keilegom, Ingrid
    JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2022, 40 (03) : 1034 - 1045
  • [29] On nonparametric estimation of the regression function under random censorship model
    Guessoum, Zohra
    Ould-Said, Elias
    STATISTICS & RISK MODELING, 2008, 26 (03) : 159 - 177
  • [30] Specification testing in nonparametric instrumental variable estimation
    Horowitz, Joel L.
    JOURNAL OF ECONOMETRICS, 2012, 167 (02) : 383 - 396