Nonparametric instrumental variables estimation of a quantile regression model

被引:75
作者
Horowitz, Joel L.
Lee, Sokbae
机构
[1] Northwestern Univ, Dept Econ, Evanston, IL 60208 USA
[2] UCL, Dept Econ, London WC1E 6BT, England
基金
英国经济与社会研究理事会;
关键词
statistical inverse; endogenous variable; instrumental variable; optimal rate; nonlinear integral equation; nonparametric regression;
D O I
10.1111/j.1468-0262.2007.00786.x
中图分类号
F [经济];
学科分类号
02 ;
摘要
We consider nonparametric estimation of a regression function that is identified by requiring a specified quantile of the regression "error" conditional on an instrumental variable to be zero. The resulting estimating equation is a nonlinear integral equation of the first kind, which generates an ill-posed inverse problem. The integral operator and distribution of the instrumental variable are unknown and must be estimated nonparametrically. We show that the estimator is mean-square consistent, derive its rate of convergence in probability, and give conditions under which this rate is optimal in a minimax sense. The results of Monte Carlo experiments show that the estimator behaves well in finite samples.
引用
收藏
页码:1191 / 1208
页数:18
相关论文
共 30 条
[1]   2 STAGE LEAST ABSOLUTE DEVIATIONS ESTIMATORS [J].
AMEMIYA, T .
ECONOMETRICA, 1982, 50 (03) :689-711
[2]   Consistency and rates of convergence of nonlinear Tikhonov regularization with random noise [J].
Bissantz, N ;
Hohage, T ;
Munk, A .
INVERSE PROBLEMS, 2004, 20 (06) :1773-1789
[3]  
BISSANTZ N, 2006, CONVERGENCE RATES GE
[4]  
Blundell R., 2003, Advances in Economics and Econometrics: Theory and Applications, Eighth World Congress (Econometric Society Monographs), P312, DOI DOI 10.1017/CBO9780511610257.011
[5]  
BLUNDELL R, 2007, IN PRESS J ECONOMETR
[6]   Two-stage regression quantiles and two-stage trimmed least squares estimators for structural equation models [J].
Chen, LA ;
Portnoy, S .
COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 1996, 25 (05) :1005-1032
[7]   An IV model of quantile treatment effects [J].
Chernozhukov, V ;
Hansen, C .
ECONOMETRICA, 2005, 73 (01) :245-261
[8]   The effects of 401(k) participation on the wealth distribution: An instrumental quantile regression analysis [J].
Chernozhukov, V ;
Hansen, C .
REVIEW OF ECONOMICS AND STATISTICS, 2004, 86 (03) :735-751
[9]   Instrumental variable estimation of nonseparable models [J].
Chernozhukov, Victor ;
Imbens, Guido W. ;
Newey, Whitney K. .
JOURNAL OF ECONOMETRICS, 2007, 139 (01) :4-14
[10]   Instrumental quantile regression inference for structural and treatment effect models [J].
Chernozhukov, Victor ;
Hansen, Christian .
JOURNAL OF ECONOMETRICS, 2006, 132 (02) :491-525