Enhanced photocatalytic performance of a two-dimensional BiOIO3/g-C3N4 heterostructured composite with a Z-scheme configuration

被引:106
作者
Gong, Yan [1 ]
Quan, Xie [1 ]
Yu, Hongtao [1 ]
Chen, Shuo [1 ]
Zhao, Huimin [1 ]
机构
[1] Dalian Univ Technol, Sch Environm Sci & Technol, Key Lab Ind Ecol & Environm Engn, Minist Educ, Dalian 116024, Peoples R China
基金
中国国家自然科学基金;
关键词
Photocatalysis; g-C3N4; Layered heterojunction; Z-scheme; GRAPHITIC CARBON NITRIDE; STATE Z-SCHEME; CHARGE-TRANSFER; CO2; LAYER; WATER; HETEROJUNCTION; NANOJUNCTION; DEGRADATION; SEPARATION;
D O I
10.1016/j.apcatb.2018.06.060
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The construction of efficient photocatalytic systems has received considerable attention in the fields of water splitting and environmental remediation because of the great potential of these systems to solve the current energy-related and environmental problems. Herein, a two-dimensional BiOIO3/graphitic carbon nitride (g-C3N4) heterostructured composite bearing BiOIO3 nanoplates coupled with g-C3N4 nanosheets has been fabricated through a facile electrostatic self-assembly method. The as-prepared hybrids exhibit significantly improved photocatalytic activities toward 2,4,6-trichlorophenol (2,4,6-TCP) degradation and hydrogen evolution in water splitting under simulated solar light irradiation over those of bare g-C3N4. The apparent rate constant, k, for 2,4,6-TCP degradation (0.97 h(-1)) and the hydrogen evolution rate (56.4 h(-1)) of the BiOIO3/g-C3N4 composites are approximately 4.8 and 3.5 times higher, respectively, than those of g-C3N4. The outstanding activity of the hybrids arises from the Z-scheme charge transfer mode, which imparts a superior photogenerated carrier separation ability and strong redox capability. In this Z-scheme, the I-3(-)/I- redox pairs formed at the contact interface between BiOIO3 and g-C3N4 act as electron mediators. This work provides insight into the rational design of other two-dimensional Z-scheme composites with applications in solar energy conversion and environmental remediation.
引用
收藏
页码:947 / 956
页数:10
相关论文
共 38 条
[1]  
[Anonymous], 2016, INT J AGR SUSTAIN, DOI DOI 10.1038/SIGTRANS.2016.18
[2]   Enhanced oxidation ability of g-C3N4 photocatalyst via C60 modification [J].
Bai, Xiaojuan ;
Wang, Li ;
Wang, Yajun ;
Yao, Wenqing ;
Zhu, Yongfa .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2014, 152 :262-270
[3]   Visible light photoactivity enhancement via CuTCPP hybridized g-C3N4 nanocomposite [J].
Chen, Daimei ;
Wang, Kewei ;
Hong, Wangzhi ;
Zong, Ruilong ;
Yao, Wenqing ;
Zhu, Yongfa .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2015, 166 :366-373
[4]   Study on the separation mechanisms of photogenerated electrons and holes for composite photocatalysts g-C3N4-WO3 [J].
Chen, Shifu ;
Hu, Yingfei ;
Meng, Sugang ;
Fu, Xianliang .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2014, 150 :564-573
[5]   Semiconductor-based Photocatalytic Hydrogen Generation [J].
Chen, Xiaobo ;
Shen, Shaohua ;
Guo, Liejin ;
Mao, Samuel S. .
CHEMICAL REVIEWS, 2010, 110 (11) :6503-6570
[6]   A unique Z-scheme 2D/2D nanosheet heterojunction design to harness charge transfer for photocatalysis [J].
Cheng, Huijie ;
Hou, Jungang ;
Takeda, Osamu ;
Guo, Xing-Min ;
Zhu, Hongmin .
JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (20) :11006-11013
[7]   Controlling interfacial contact and exposed facets for enhancing photocatalysis via 2D-2D heterostructures [J].
Dong, Fan ;
Xiong, Ting ;
Sun, Yanjuan ;
Zhang, Yuxin ;
Zhou, Ying .
CHEMICAL COMMUNICATIONS, 2015, 51 (39) :8249-8252
[8]   A fantastic graphitic carbon nitride (g-C3N4) material: Electronic structure, photocatalytic and photoelectronic properties [J].
Dong, Guoping ;
Zhang, Yuanhao ;
Pan, Qiwen ;
Qiu, Jianrong .
JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS, 2014, 20 :33-50
[9]   Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: A review of fundamentals, progress and problems [J].
Gaya, Umar Ibrahim ;
Abdullah, Abdul Halim .
JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS, 2008, 9 (01) :1-12
[10]   Photocatalytic Reduction of CO2 on TiO2 and Other Semiconductors [J].
Habisreutinger, Severin N. ;
Schmidt-Mende, Lukas ;
Stolarczyk, Jacek K. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2013, 52 (29) :7372-7408