共 103 条
Insulin signalling promotes dendrite and synapse regeneration and restores circuit function after axonal injury
被引:91
作者:
Agostinone, Jessica
[1
,2
]
Alarcon-Martinez, Luis
[1
,2
]
Gamlin, Clare
[3
]
Yu, Wan-Qing
[3
]
Wong, Rachel O. L.
[3
]
Di Polo, Adriana
[1
,2
]
机构:
[1] Univ Montreal, Dept Neurosci, Montreal, PQ H2X 0A9, Canada
[2] Univ Montreal, Univ Montreal Hosp Res Ctr CR CHUM, Montreal, PQ H2X 0A9, Canada
[3] Univ Washington, Dept Biol Struct, 1959 NE Pacific St, Seattle, WA 98195 USA
来源:
基金:
加拿大健康研究院;
美国国家卫生研究院;
关键词:
insulin;
dendrite regeneration;
retinal ganglion cell;
mammalian target of rapamycin;
optic nerve;
RETINAL GANGLION-CELLS;
CENTRAL-NERVOUS-SYSTEM;
IN-VIVO;
ALZHEIMERS-DISEASE;
OPTIC-NERVE;
OCULAR HYPERTENSION;
MOUSE RETINA;
INTRAOCULAR-PRESSURE;
NEUROTROPHIC FACTOR;
PARKINSONS-DISEASE;
D O I:
10.1093/brain/awy142
中图分类号:
R74 [神经病学与精神病学];
学科分类号:
摘要:
Dendrite pathology and synapse disassembly are critical features of chronic neurodegenerative diseases. In spite of this, the capacity of injured neurons to regenerate dendrites has been largely ignored. Here, we show that, upon axonal injury, retinal ganglion cells undergo rapid dendritic retraction and massive synapse loss that preceded neuronal death. Human recombinant insulin, administered as eye drops or systemically after dendritic arbour shrinkage and prior to cell loss, promoted robust regeneration of dendrites and successful reconnection with presynaptic targets. Insulin-mediated regeneration of excitatory postsynaptic sites on retinal ganglion cell dendritic processes increased neuronal survival and rescued light-triggered retinal responses. Further, we show that axotomy-induced dendrite retraction triggered substantial loss of the mammalian target of rapamycin (mTOR) activity exclusively in retinal ganglion cells, and that insulin fully reversed this response. Targeted loss-of-function experiments revealed that insulin-dependent activation of mTOR complex 1 (mTORC1) is required for new dendritic branching to restore arbour complexity, while complex 2 (mTORC2) drives dendritic process extension thus re-establishing field area. Our findings demonstrate that neurons in the mammalian central nervous system have the intrinsic capacity to regenerate dendrites and synapses after injury, and provide a strong rationale for the use of insulin and/or its analogues as pro-regenerative therapeutics for intractable neurodegenerative diseases including glaucoma.
引用
收藏
页码:1963 / 1980
页数:18
相关论文