Global bifurcation result and nodal solutions for Kirchhoff-type equation

被引:1
作者
Ye, Fumei [1 ]
Han, Xiaoling [1 ]
机构
[1] Northwest Normal Univ, Sch Math & Stat, Lanzhou 730070, Peoples R China
来源
AIMS MATHEMATICS | 2021年 / 6卷 / 08期
关键词
nodal solutions; bifurcation; nonlocal problem; eigenvalues; POSITIVE SOLUTIONS; EXISTENCE; MULTIPLICITY;
D O I
10.3934/math.2021482
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate the global structure of nodal solutions for the Kirchhoff-type problem (a + b 0 |u'|2dx)u'' = lambda f (u), x E (0,1), u(0) = u(1) = 0 , where a > 0, b > 0 are real constants, lambda is a real parameter. f E C(R, R) and there exist four constants s(1) < s(2) < 0 < s(3) < s(4) such that f (0) = f(si) = 0, i = 1, 2, 3, 4, f(s) > 0 for s E (s(1), s(2)) U (0, s3) U (s4, +co), f(s) < 0 for s E (-infinity, s(1)) U (s(2), 0) U (s(3), s(4)). Under some suitable assumptions on nonlinear terms, we prove the existence of unbounded continua of nodal solutions of this problem which bifurcate from the line of trivial solutions or from infinity, respectively.
引用
收藏
页码:8331 / 8341
页数:11
相关论文
共 17 条
  • [1] Cao X., 2018, ELECTRON J DIFFERENT, V2018, P1
  • [2] Solutions for a p(x)-Kirchhoff type equation with Neumann boundary data
    Dai, Guowei
    Ma, Ruyun
    [J]. NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2011, 12 (05) : 2666 - 2680
  • [3] Infinitely many non-negative solutions for a p(x)-Kirchhoff-type problem with Dirichlet boundary condition
    Dai, Guowei
    Wei, Jian
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 73 (10) : 3420 - 3430
  • [4] Existence of solutions for a p(x)-Kirchhoff-type equation
    Dai, Guowei
    Hao, Ruifang
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 359 (01) : 275 - 284
  • [5] On the sub-supersolution method for p(x)-Kirchhoff type equations
    Han, Xiaoling
    Dai, Guowei
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2012,
  • [6] Positive solutions to Kirchhoff type equations with nonlinearity having prescribed asymptotic behavior
    Liang, Zhanping
    Li, Fuyi
    Shi, Junping
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2014, 31 (01): : 155 - 167
  • [7] EXISTENCE AND MULTIPLICITY OF POSITIVE SOLUTIONS FOR A CLASS OF KIRCHHOFF TYPE PROBLEMS AT RESONANCE
    Liao, Jiafeng
    Zhang, Peng
    Liu, Jiu
    Tang, Chunlei
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2016, 9 (06): : 1959 - 1974
  • [8] Global bifurcation and nodal solutions for homogeneous Kirchhoff type equations
    Liu, Fang
    Luo, Hua
    Dai, Guowei
    [J]. ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2020, (29) : 1 - 13
  • [9] Global behavior of the components of nodal solutions of asymptotically linear eigenvalue problems
    Ma, Ruyun
    [J]. APPLIED MATHEMATICS LETTERS, 2008, 21 (07) : 754 - 760
  • [10] Existence and multiplicity of positive solutions of a nonlinear eigenvalue problem with indefinite weight function
    Ma, Ruyun
    Han, Xiaoling
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2009, 215 (03) : 1077 - 1083