A 65-nm CMOS Low-Power Impulse Radar System for Human Respiratory Feature Extraction and Diagnosis on Respiratory Diseases

被引:18
|
作者
Tseng, Shao-Ting [1 ]
Kao, Yu-Hsien [1 ]
Peng, Chun-Chieh [1 ]
Liu, Jinn-Yann [1 ]
Chu, Shao-Chang [1 ]
Hong, Guo-Feng [1 ,2 ]
Hsieh, Chi-Hsuan [1 ]
Hsu, Kung-Tuo [1 ,3 ]
Liu, Wen-Te [4 ,5 ,6 ,7 ,8 ]
Huang, Yuan-Hao [1 ]
Huang, Shi-Yu [1 ]
Chu, Ta-Shun [1 ]
机构
[1] Natl Tsing Hua Univ, Dept Elect Engn, Hsinchu 300, Taiwan
[2] Mediatek, Hsinchu 300, Taiwan
[3] ASolid Technol Co Ltd, Hsinchu 300, Taiwan
[4] Taipei Med Univ, Shuang Ho Hosp, Dept Internal Med, Div Pulm Med, New Taipei 235, Taiwan
[5] Taipei Med Univ, Sch Resp Therapy, Coll Med, Taipei 110, Taiwan
[6] Natl Cheng Kung Univ, Dept Engn Sci, Tainan 701, Taiwan
[7] Taipei Med Univ, Taipei Med Univ Hosp, Sleep Res Ctr, Taipei 110, Taiwan
[8] Taipei Med Univ, Shuang Ho Hosp, Sleep Ctr, New Taipei 235, Taiwan
关键词
Biomedical applications; CMOS; digital signal processing (DSP); radar systems; sensors; TRANSCEIVER; TRACK;
D O I
10.1109/TMTT.2016.2536029
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper presents a radar system for extracting human respiratory features. The proposed radar chip comprises three major components: a digital-to-time converter (DTC), a transmitter, and a receiver. The all-digital standard cell-based DTC achieves a timing resolution of 10 ps on a 100-ns time scale, supporting a range-gated sensing process. The transmitter is composed of a digital pulse generator. The receiver comprises a direct-sampling passive frontend for achieving high linearity, an integrator for enhancing the signal-to-noise ratio, and a successive approximation register analog-to-digital converter for signal quantization. A fully integrated CMOS impulse radar chip was fabricated using 65-nm CMOS technology, and the total power consumption is 21 mW. In the backend, a real-time digital signal-processing platform captures human respiratory waveforms via the radar chip and processes the waveforms by applying a human respiratory feature extraction algorithm. Furthermore, a clinical trial was conducted for establishing a new diagnosis workflow for identifying respiratory diseases by the proposed wireless sensor system. The proposed system was validated by applying an adaptive network-based fuzzy inference system and support vector machine algorithm to the clinical trial results. These algorithms confirmed the effectiveness of the proposed system in diagnosing respiratory diseases.
引用
收藏
页码:1029 / 1041
页数:13
相关论文
共 50 条
  • [1] A 65nm CMOS Low Power Impulse Radar for Respiratory Feature Extraction
    Tseng, Shao-Ting
    Kao, Yu-Hsien
    Peng, Chun-Chieh
    Liu, Jinn-Yann
    Chu, Shao-Chang
    Hong, Guo-Feng
    Hsieh, Chi-Hsuan
    Hsu, Kung-Tuo
    Liu, Wen-Te
    Huang, Yuan-Hao
    Huang, Shi-Yu
    Chu, Ta-Shun
    PROCEEDINGS OF THE 2015 IEEE RADIO FREQUENCY INTEGRATED CIRCUITS SYMPOSIUM (RFIC 2015), 2015, : 251 - 254
  • [2] A 65-nm Low Power ECG Feature Extraction System
    Bayasi, Nourhan
    Tekeste, Temesghen
    Saleh, Hani
    Mohammad, Baker
    Ismail, Mohammed
    2015 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), 2015, : 746 - 749
  • [3] Low-power Comparator in 65-nm CMOS with reduced delay time
    Tohidi, Mohammad
    Madsen, Jens K.
    Heck, Martijn J. R.
    Moradi, Farshad
    23RD IEEE INTERNATIONAL CONFERENCE ON ELECTRONICS CIRCUITS AND SYSTEMS (ICECS 2016), 2016, : 736 - 739
  • [4] A Compact Low-Power Driver Array for VCSELs in 65-nm CMOS Technology
    Zeng, Zhiyao
    Sun, Kexu
    Wang, Guanhua
    Zhang, Tao
    Kulis, Szymon
    Gui, Ping
    Moreira, Paulo
    IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2017, 64 (06) : 1599 - 1604
  • [5] A Low-Power ΣΔ ADC Optimized for GSM/EDGE Standard in 65-nm CMOS
    Fakhoury, Hussein
    Jabbour, Chadi
    Khushk, Hasham
    Van-Tam Nguyen
    Loumeau, Patrick
    2011 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), 2011, : 1109 - 1112
  • [6] A Low-Power GSM/EDGE/WCDMA Polar Transmitter in 65-nm CMOS
    Youssef, Michael
    Zolfaghari, Alireza
    Mohammadi, Behnam
    Darabi, Hooman
    Abidi, Asad A.
    IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2011, 46 (12) : 3061 - 3074
  • [7] A Low-Power 23-25.5-GHz FMCW Radar Transceiver in 65-nm CMOS for AIOT Applications
    Wang, Shengjie
    Chen, Jiangbo
    Liu, Jiabing
    Li, Quanyong
    Yuan, Shuoyang
    Kuan, Yen-Cheng
    Yu, Xiaopeng
    Song, Chunyi
    Gu, Qun Jane
    Xu, Zhiwei
    IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2024, 72 (04) : 2560 - 2576
  • [8] Wireless Sensing of Human Respiratory Parameters by Low-Power Ultrawideband Impulse Radio Radar
    Lai, Joshua Chong Yue
    Xu, Ying
    Gunawan, Erry
    Chua, Eric Chern-Pin
    Maskooki, Arash
    Guan, Yong Liang
    Low, Kay-Soon
    Soh, Cheong Boon
    Poh, Chueh-Loo
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2011, 60 (03) : 928 - 938
  • [9] A Low-Power 77 GHz Transceiver for Automotive Radar System in 65 nm CMOS Technology
    Kim, Seong-Kyun
    Cui, Chenglin
    Nam, Sangwook
    Kim, Byung-Sung
    2013 ASIA-PACIFIC MICROWAVE CONFERENCE PROCEEDINGS (APMC 2013), 2013, : 236 - 238
  • [10] 60-GHz low-power OOK transmitter in 65-NM CMOS technology
    Lee, Hui Dong
    Kang, Tae Young
    Lee, Moon-Sik
    Park, Bonghyuk
    MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, 2015, 57 (08) : 1977 - 1980