Understanding Between-Person Interventions With Time-Intensive Longitudinal Outcome Data: Longitudinal Mediation Analyses

被引:16
|
作者
Berli, Corina [1 ]
Inauen, Jennifer [2 ]
Stadler, Gertraud [3 ,4 ]
Scholz, Urte [1 ,5 ]
Shrout, Patrick E. [6 ]
机构
[1] Univ Zurich, Dept Psychol Appl Social & Hlth Psychol, Binzmuehlestr 14-14, CH-8050 Zurich, Switzerland
[2] Univ Bern, Inst Psychol, Bern, Switzerland
[3] Charite Univ Med Berlin, Gender Med, Berlin, Germany
[4] Univ Aberdeen, Inst Appl Hlth Sci, Aberdeen, Scotland
[5] Univ Zurich, Univ Res Prior Program Dynam Hlth Aging, Zurich, Switzerland
[6] NYU, Dept Psychol, New York, NY 10003 USA
基金
瑞士国家科学基金会;
关键词
Longitudinal mediation; Multilevel mediation; Temporal dynamics; Health behavior change interventions; Between-person intervention; Intensive longitudinal data; MODELS; TRIAL;
D O I
10.1093/abm/kaaa066
中图分类号
B84 [心理学];
学科分类号
04 ; 0402 ;
摘要
Background Mediation analysis is an important tool for understanding the processes through which interventions affect health outcomes over time. Typically the temporal intervals between X, M, and Y are fixed by design, and little focus is given to the temporal dynamics of the processes. Purpose In this article, we aim to highlight the importance of considering the timing of the causal effects of a between-person intervention X, on M and Y, resulting in a deeper understanding of mediation. Methods We provide a framework for examining the impact of a between-person intervention X on M and Y over time when M and Y are measured repeatedly. Five conceptual and analytic steps involve visualizing the effects of the intervention on Y, M, the relationship of M and Y, and the mediating process over time and selecting an appropriate analytic model. Results We demonstrate how these steps can be applied to two empirical examples of health behavior change interventions. We show that the patterns of longitudinal mediation can be fit with versions of longitudinal multilevel structural equation models that represent how the magnitude of direct and indirect effects vary over time. Conclusions We urge researchers and methodologists to pay more attention to temporal dynamics in the causal analysis of interventions.
引用
收藏
页码:476 / 488
页数:13
相关论文
共 24 条