Scaling of Acceleration Statistics in High Reynolds Number Turbulence

被引:16
作者
Buaria, Dhawal [1 ,2 ]
Sreenivasan, Katepalli R. [1 ,3 ,4 ]
机构
[1] NYU, Tandon Sch Engn, New York, NY 11201 USA
[2] Max Planck Inst Dynam & Self Org, D-37077 Gottingen, Germany
[3] NYU, Dept Phys, New York, NY 10012 USA
[4] NYU, Courant Inst Math Sci, New York, NY 10012 USA
关键词
LAGRANGIAN STOCHASTIC-MODELS; PARTICLE ACCELERATIONS; NUMERICAL SIMULATIONS; PRESSURE; INTERMITTENCY; TRAJECTORIES; DEPENDENCE; FLUID;
D O I
10.1103/PhysRevLett.128.234502
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The scaling of acceleration statistics in turbulence is examined by combining data from the literature with new data from well-resolved direct numerical simulations of isotropic turbulence, significantly extending the Reynolds number range. The acceleration variance at higher Reynolds numbers departs from previous predictions based on multifractal models, which characterize Lagrangian intermittency as an extension of Eulerian intermittency. The disagreement is even more prominent for higher-order moments of the acceleration. Instead, starting from a known exact relation, we relate the scaling of acceleration variance to that of Eulerian fourth-order velocity gradient and velocity increment statistics. This prediction is in excellent agreement with the variance data. Our Letter highlights the need for models that consider Lagrangian intermittency independent of the Eulerian counterpart.
引用
收藏
页数:7
相关论文
共 56 条
[1]  
[Anonymous], 1949, C. R. Akad. URSS
[2]   REYNOLDS-NUMBER DEPENDENCE OF HIGH-ORDER MOMENTS OF THE STREAMWISE TURBULENT VELOCITY DERIVATIVE [J].
ANTONIA, RA ;
CHAMBERS, AJ ;
SATYAPRAKASH, BR .
BOUNDARY-LAYER METEOROLOGY, 1981, 21 (02) :159-171
[3]   Universal intermittent properties of particle trajectories in highly turbulent flows [J].
Arneodo, A. ;
Benzi, R. ;
Berg, J. ;
Biferale, L. ;
Bodenschatz, E. ;
Busse, A. ;
Calzavarini, E. ;
Castaing, B. ;
Cencini, M. ;
Chevillard, L. ;
Fisher, R. T. ;
Grauer, R. ;
Homann, H. ;
Lamb, D. ;
Lanotte, A. S. ;
Leveque, E. ;
Luethi, B. ;
Mann, J. ;
Mordant, N. ;
Mueller, W. -C. ;
Ott, S. ;
Ouellette, N. T. ;
Pinton, J. -F. ;
Pope, S. B. ;
Roux, S. G. ;
Toschi, F. ;
Xu, H. ;
Yeung, P. K. .
PHYSICAL REVIEW LETTERS, 2008, 100 (25)
[4]   Statistics of three-dimensional Lagrangian turbulence [J].
Beck, Christian .
PHYSICAL REVIEW LETTERS, 2007, 98 (06)
[5]   Persistent accelerations disentangle Lagrangian turbulence [J].
Bentkamp, Lukas ;
Lalescu, Cristian C. ;
Wilczek, Michael .
NATURE COMMUNICATIONS, 2019, 10 (1)
[6]   Multifractal statistics of Lagrangian velocity and acceleration in turbulence [J].
Biferale, L ;
Boffetta, G ;
Celani, A ;
Devenish, BJ ;
Lanotte, A ;
Toschi, F .
PHYSICAL REVIEW LETTERS, 2004, 93 (06) :064502-1
[7]   THE MULTIFRACTAL LAGRANGIAN NATURE OF TURBULENCE [J].
BORGAS, MS .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1993, 342 (1665) :379-411
[8]   Single-particle Lagrangian statistics from direct numerical simulations of rotating-stratified turbulence [J].
Buaria, D. ;
Pumir, A. ;
Feraco, F. ;
Marino, R. ;
Pouquet, A. ;
Rosenberg, D. ;
Primavera, L. .
PHYSICAL REVIEW FLUIDS, 2020, 5 (06)
[9]   A highly scalable particle tracking algorithm using partitioned global address space (PGAS) programming for extreme-scale turbulence simulations [J].
Buaria, D. ;
Yeung, P. K. .
COMPUTER PHYSICS COMMUNICATIONS, 2017, 221 :246-258
[10]   A Lagrangian study of turbulent mixing: forward and backward dispersion of molecular trajectories in isotropic turbulence [J].
Buaria, D. ;
Yeung, P. K. ;
Sawford, B. L. .
JOURNAL OF FLUID MECHANICS, 2016, 799 :352-382