ON QUANTUM SPECIAL KAHLER GEOMETRY

被引:13
作者
Bellucci, Stefano [1 ]
Marrani, Alessio [2 ]
Roychowdhury, Raju [3 ]
机构
[1] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy
[2] Stanford Univ, Dept Phys, Stanford Inst Theoret Phys, Varian Lab, Stanford, CA 94305 USA
[3] Univ Naples Federico II, Dipartimento Sci Fis, I-80126 Naples, Italy
来源
INTERNATIONAL JOURNAL OF MODERN PHYSICS A | 2010年 / 25卷 / 09期
关键词
Special Kahler geometry; supergravity; black holes; attractor mechanism; NON-BPS ATTRACTORS; NONLINEAR SIGMA-MODEL; STU BLACK-HOLES; CALABI-YAU; MACROSCOPIC ENTROPY; CP CONSERVATION; CRITICAL-POINTS; SUPERGRAVITY; F-THEORY; MANIFOLDS;
D O I
10.1142/S0217751X10049116
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
We compute the effective black hole potential V-BH of the most general N = 2, d = 4 (local) special Kahler geometry with quantum perturbative corrections, consistent with axion-shift Peccei-Quinn symmetry and with cubic leading order behavior. We determine the charge configurations supporting axion-free attractors, and explain the differences among various configurations in relations to the presence of "flat" directions of V-BH at its critical points. Furthermore, we elucidate the role of the sectional curvature at the nonsupersymmetric critical points of V-BH, and compute the Riemann tensor (and related quantities), as well as the so-called E-tensor. The latter expresses the nonsymmetricity of the considered quantum perturbative special Kahler geometry.
引用
收藏
页码:1891 / 1935
页数:45
相关论文
共 50 条
  • [41] From G2 geometry to quaternionic Kahler metrics
    Biquard, Olivier
    JOURNAL OF GEOMETRY AND PHYSICS, 2015, 91 : 101 - 107
  • [42] The Einstein-Maxwell equations, Kahler metrics, and Hermitian geometry
    LeBrun, Claude
    JOURNAL OF GEOMETRY AND PHYSICS, 2015, 91 : 163 - 171
  • [43] Some remarks on the Kahler geometry of the Taub-NUT metrics
    Loi, Andrea
    Zedda, Michela
    Zuddas, Fabio
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2012, 41 (04) : 515 - 533
  • [44] Volume minimization and conformally Kahler, Einstein-Maxwell geometry
    Futaki, Akito
    Ono, Hajime
    JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2018, 70 (04) : 1493 - 1521
  • [45] Semichiral fields on S2 and generalized Kahler geometry
    Benini, Francesco
    Crichigno, P. Marcos
    Jain, Dharmesh
    Nian, Jun
    JOURNAL OF HIGH ENERGY PHYSICS, 2016, (01): : 1 - 41
  • [46] Developments in special geometry
    Mohaupt, Thomas
    Vaughan, Owen
    7TH INTERNATIONAL CONFERENCE ON QUANTUM THEORY AND SYMMETRIES (QTS7), 2012, 343
  • [47] On Special Hermitian Geometry
    Fernandez, M.
    Tomassini, A.
    Ugarte, L.
    Villacampa, R.
    GEOMETRY AND PHYSICS, 2009, 1130 : 145 - +
  • [48] An integral invariant from the view point of locally conformally Kahler geometry
    Futaki, Akito
    Hattori, Kota
    Ornea, Liviu
    MANUSCRIPTA MATHEMATICA, 2013, 140 (1-2) : 1 - 12
  • [49] Weyl Curvature, Del Pezzo Surfaces, and Almost-Kahler Geometry
    LeBrun, Claude
    JOURNAL OF GEOMETRIC ANALYSIS, 2015, 25 (03) : 1744 - 1772
  • [50] From Special Geometry to Black Hole Partition Functions
    Mohaupt, Thomas
    ATTRACTOR MECHANISM, 2010, 134 : 165 - 241